
J Grid Computing
DOI 10.1007/s10723-012-9225-4

Riding Out the Storm: How to Deal with the Complexity
of Grid and Cloud Management

Jesús Montes · Alberto Sánchez · María S. Pérez

Received: 20 September 2011 / Accepted: 9 August 2012
© Springer Science+Business Media B.V. 2012

Abstract Over the last decade, Grid computing
paved the way for a new level of large scale distrib-
uted systems. This infrastructure made it possible
to securely and reliably take advantage of widely
separated computational resources that are part
of several different organizations. Resources can
be incorporated to the Grid, building a theoretical
virtual supercomputer. In time, cloud computing
emerged as a new type of large scale distributed
system, inheriting and expanding the expertise
and knowledge that have been obtained so far.
Some of the main characteristics of Grids natu-
rally evolved into clouds, others were modified
and adapted and others were simply discarded or
postponed. Regardless of these technical specifics,
both Grids and clouds together can be consid-

J. Montes (B)
Centro de Supercomputación y Visualización de
Madrid (CeSViMa), Universidad Politécnica de
Madrid, Madrid, Spain
e-mail: jmontes@cesvima.upm.es

A. Sánchez
E.T.S. de Ingeniería Informática, Univ. Rey Juan
Carlos, Madrid, Spain
e-mail: alberto.sanchez@urjc.es

M. S. Pérez
Facultad de Informática, Universidad Politécnica de
Madrid, Madrid, Spain
e-mail: mperez@fi.upm.es

ered as one of the most important advances in
large scale distributed computing of the past ten
years; however, this step in distributed computing
has came along with a completely new level of
complexity. Grid and cloud management mech-
anisms play a key role, and correct analysis and
understanding of the system behavior are needed.
Large scale distributed systems must be able to
self-manage, incorporating autonomic features ca-
pable of controlling and optimizing all resources
and services. Traditional distributed computing
management mechanisms analyze each resource
separately and adjust specific parameters of each
one of them. When trying to adapt the same pro-
cedures to Grid and cloud computing, the vast
complexity of these systems can make this task
extremely complicated. But large scale distributed
systems complexity could only be a matter of
perspective. It could be possible to understand
the Grid or cloud behavior as a single entity, in-
stead of a set of resources. This abstraction could
provide a different understanding of the system,
describing large scale behavior and global events
that probably would not be detected analyzing
each resource separately. In this work we define a
theoretical framework that combines both ideas,
multiple resources and single entity, to develop
large scale distributed systems management tech-
niques aimed at system performance optimization,
increased dependability and Quality of Service
(QoS). The resulting synergy could be the key

J. Montes et al.

to address the most important difficulties of Grid
and cloud management.

Keywords Grid computing · Cloud computing ·
Autonomic computing · Theoretical models

1 Introduction

Since the appearance of the first cluster comput-
ers, distributed computing has become the com-
mon basis for the majority of new advances in
supercomputing. Network interconnection has en-
abled the combination of independent resources,
making it possible to create powerful systems,
capable of achieving top levels of computational
power and new functional capabilities. Clear
proof of this is that most of top 500 computers in
the world are of distributed (cluster-like) nature
(81.4 % according to the 06/2012 list at TOP500
Supercomputing Site [1]).

With the emergence of the Internet and global
interconnection, new forms of large scale distrib-
uted computing appeared. Resources could not
only be combined within local, private networks,
but also geographically dispersed ones, enabling
access to a potentially unlimited pool of compu-
tational power. Several initiatives have attempted
this, but it was in the late 1990s when the idea was
deeply explored and developed with the appear-
ance of Grid computing [2], trying to address all
possible related issues. Cloud computing [3] has
continued in this same path, exploring new alter-
natives for large scale distributed computation.

The Grid is frequently seen as a massive pool
of heterogeneous and geographically distributed
computational resources. These resources are co-
ordinated, but not subject to a centralized con-
trol. They use standard, open and general-purpose
protocols and interfaces to interact and, finally,
the resulting system delivers non-trivial qualities
of service [4]. The Grid allows to globally share
computing resources, storage elements, specific
applications, specific-purpose systems, etc. Most
of characteristics presented by Grid systems were
already present in other large scale computing
initiatives. Grid computing puts all these ideas
together, coordinating them and further develop-
ing their principles and implications. The Grid

provides a successful environment for applications
that require a very large amount of computational
and storage resources, such as numerical simu-
lations, genetic analysis, complex natural simula-
tions, etc.

Cloud computing shares some of these char-
acteristics, but has also successfully explored and
developed a much more market-oriented perspec-
tive. Cloud infrastructures are devoted to pro-
vide reliable services, delivered through next-
generation data centers, and built over virtualized
computing and storage technologies. The idea is to
enable users (also called consumers) to access ap-
plications and data from a cloud, anywhere in the
world and on demand. The consumers are assured
that the cloud infrastructure is sufficiently ro-
bust, guaranteeing availability at any time. Clouds
can provide an enormous amount of computa-
tional power that many advanced applications can
benefit from.

Nevertheless, over the past decade Grid com-
puting has received some criticism, due to the
many technological and social problems that the
development of this technology creates. Among
the most important technological issues are com-
munication and software protocols integration,
management, scalability, dependability and secu-
rity. Among the non-technological ones, the most
important are related to confidence and adminis-
trative issues between Grid partners sharing re-
sources, given the de-centralized nature of the
system. Most of these Grid issues can be roughly
summarized in one word: complexity. The ex-
tremely complex nature, at many different levels,
of this kind of systems is the underlying cause
of all these mentioned problems. This has an
effect on all aspects of Grid operation and needs
to be handled properly in order to provide high
performance, dependability and quality of service
among other possible features. In order to build
a Grid computing infrastructure, its natural com-
plexity has to be correctly identified and under-
stood. Developing techniques capable of manag-
ing this complexity enables to provide scalability,
dependability, quality of service, etc.

Apparently, cloud computing addresses some
of these issues, or at least reduces its impact. A
crucial question that was raised by many voices
shortly after the cloud became an established

How to Deal with the Complexity of Grid and Cloud

paradigm was if there was really something new
in cloud computing and, more specifically, which
were the differences between it and the previously
existing concept of Grid computing. On the one
hand, a quick comparison shows many similarities
between both initiatives, something that from the
beginning led to some people to suggest that the
cloud was nothing but the Grid, simply presented
from a new, market-oriented, perspective. Other
voices, on the other hand, claimed that, although
Grids and clouds are both large scale distributed
initiatives and therefore share many basic charac-
teristics, cloud computing introduces several key
aspects, creating a whole new paradigm. Not only
Grid and cloud, but other similar large scale dis-
tributed computing concepts such as utility com-
puting and Internet computing were also involved
in this debate. Both paradigms share a common
vision: “to reduce the cost of computing, increase
reliability and increase flexibility by transforming
computers from something that we buy and oper-
ate ourselves to something that it is operated by a
third party” [5].

Regardless of their specific differences, most
Grid and cloud problems are still the same. Both
need to be able to manage large scale (yet some-
how different) infrastructures. They both need
to define methods by which users/consumers dis-
cover, request and use resources provided by the
system. Additionally, they both need to provide
the users/consumers with the necessary mecha-
nisms to develop the often highly distributed com-
putations that execute on those resources. Com-
plexity is the source of most Grid and cloud issues.

One of the most common strategies to handle
complexity in large scale distributed systems is
the incorporation of autonomic computing fea-
tures. Autonomic computing [6] is an attempt to
deal with the system’s complexity, in order to
increase performance and other features. It was
inspired by biological systems that can regulate
themselves (like the human nerve system). In
autonomic systems multiple management tasks
are performed automatically and transparently,
providing (among many other features) reliabil-
ity, dependability and quality of service. The dif-
ferent aspects related to autonomic computing
have proved to be beneficial for Grid and cloud
computing in many ways, making it possible to

achieve some of its most ambitious goals. Incor-
porating autonomic features into system manage-
ment mechanisms strongly facilitates the system
administrator task, which in a large scale system
would be otherwise overwhelming. Proof of this
is that current Grid and cloud management tech-
niques include autonomic characteristics [7–12]
dealing with each independent resource’s sepa-
rately and automatically optimizing its behavior
in order to achieve an improvement in global
performance. This approach has been successful
so far, enabling the creation of very large distrib-
uted infrastructures that have played a key role in
important scientific advances in the last decade,
such as OSG [13], TeraGrid [14] or the EGEE
[15] project and their successors XSEDE [16] and
EGI-InSPIRE [17].

This system management approach focused on
individual resources seems to be only a part of
what it is traditionally done when managing com-
puting systems. Less complex systems such as in-
dividual machines or clusters are usually regarded
and analyzed also as single entities, and manage-
ment techniques address global issues that affect
not only its individual components, but also the
sum of its parts. This creates the idea of the system
as a separate concept from the sum of its parts. This
idea is made possible by an abstraction process
that isolates the top level user from the machine’s
specifics. When noticing this apparent difference
between the Grids, clouds and other systems,
several questions arise, regarding its autonomic
management: Why is large scale distributed sys-
tems management different? If the concepts of
Grid and cloud exist from theoretical point of
view, why is there no translation of them into
management terms? Can both visions (multiple
resources and single entity) be combined, as it is
done in other systems, to improve system manage-
ment techniques? What are the implications? This
work attempts to answer these questions, trying
to define the theoretical foundations necessary to
study and develop new and better Grid and cloud
management techniques.

With this aim we define a theoretical frame-
work and a set of formalisms to provide the neces-
sary basis to fully analyze and understand a large
scale distributed system such as a Grid or a cloud.
The knowledge obtained from this analysis can be

J. Montes et al.

used in conjunction with an autonomic approach
to develop effective and efficient system man-
agement techniques that address the main issues
of these modern distributed infrastructures. Our
vision serves as well as the theoretical basis to
develop a single entity abstraction of the system
that is both complete and useful. The paper is
organized as follows: Section 2 describes related
work; Section 3 discusses the issues related to the
application of autonomic computing techniques
to large scale distributed systems; Section 4 de-
scribes the proposed theoretical model and its
specific application for the cases of Grid and cloud
computing; Section 5 describes a proposed frame-
work for application of this theoretical model and
continuous loop of system management improve-
ment; Section 6 describes some cases of study of
real Grid and cloud projects that share ideas and
are strongly related with the proposed theoretical
model; finally, Section 7 presents the final conclu-
sions and discussion motivated by this work.

2 Related Work

There are different research works related to the
characterization of Grids and clouds behavior.
Benchmarks [18] are mainly used for characteriz-
ing the performance behavior of a system under
representative workloads. Several Grid bench-
marking [19] approaches have arisen. NAS Grid
Benchmark (NGB) [20] and GridBench [21] are
some examples. Nevertheless, Grid benchmarking
is not enough for modeling the dynamic behavior
of Grids. Benchmarks provide only pre-defined,
static system workloads and their analysis is based
on their results. Furthermore, these techniques
depend on the accuracy of benchmarks and the
suitable selection of inputs and configuration pa-
rameters. It is not always easy to select a realistic
workload.

Ogura et al. [22] perform a study of the be-
havior of virtualization software on multi-core
platforms in a cloud running scientific and trans-
actional application. The main goal of these ex-
periments is to analyze how the virtual machine
configuration affects the performance of applica-
tions. Authors use the NPB NAS [23] and TCP-
H [24] benchmarks. Although the results obtained

are useful for tuning these environments under
different workloads, this study does not address
the complexity of the use of large clouds.

One step further than benchmarking is mod-
eling. Bratosin et al. [25] provide a formal de-
scription of Grids by means of Colored Petri
Nets (CPN), which can be used for simulation.
Our proposal is not a simulation but an abstract
model of a large scale environment (both Grid
and cloud), which makes easier the application of
more efficient management techniques.

Chan et al. define in [26] a theoretical graph-
based model of computing clouds and model-
based testing criteria for assuring the quality of
applications running on top of the cloud. This
work is oriented to small clouds and not to large
clouds. It is mainly used for the dynamic compo-
sition of clouds, such as merging clouds, splitting
clouds, etc. Our purpose is to provide a theoretical
framework for making easier the management of
large scale environments (both Grids and clouds),
hiding their complexity.

Finally, there are some methodologies for
building Grid and cloud-based software develop-
ment projects. Ostberg et al. present in [27] a
methodology for Service-Oriented Architecture
(SOA) design intended to Grid and cloud de-
velopments. The objective of this methodology
is to increase flexibility and reduce complexity.
Unlike this work, our approach is design model-
agnostic. Furthermore, we find differences in the
way of dealing with the complexity of Grid and
cloud environments. Ostberg et al. methodology
does not distinguish Grids from clouds. Finally,
only Grid case studies are presented in the above-
mentioned paper.

3 Autonomic Management of Large Scale
Distributed Systems

As it has been discussed, autonomic computing
can provide a practical solution to the problem of
managing highly complex systems, such as Grids
and clouds. In order to do so, a thorough analysis
of this problem is presented in this section, analyz-
ing the autonomic management issues that can be
identified in Grids and clouds and developing the
basic ideas to efficiently address them.

How to Deal with the Complexity of Grid and Cloud

3.1 Autonomic Management Issues in Grid and
Cloud Computing

Over the past decades, as global networking be-
came reality, several different incarnations and
definitions of what could be called Grid systems
appeared [28]. The most recent cloud computing
paradigm has followed an analogous path [29, 30].
Nevertheless, most part of the scientific commu-
nity seems to agree in an intuitive idea of what
cloud computing is, and what could be expected of
it [5]. Despite the differences between Grids and
clouds, the following five main characteristics can
be observed to some extent in most of them:

1. Distributed: The system is composed of a set
of resources that are logically and sometimes
physically distributed over a wide-area com-
munications network (WAN). The network
is, in consequence, another resource of the
system.

2. Non-dedicated: In most cases, the resources
that compose the system are simultaneously
used by multiple entities (clients, applications,
external users, etc.).

3. Service-oriented: The system is designed to
provide a function or functions in the form of a
set of services. In some cases (specially clouds)
this evolves into a market-oriented model in
which the relation condition of the services
provided is controlled by more sophisticated
procedures such as Service Level Agreements
(SLAs).

4. Heterogeneous: In many large scale distrib-
uted systems (specially Grids) the comput-
ing resources involved are clearly different.
Typical examples of this diversity are differ-
ent architectures, operating systems or net-
work protocols. Clouds tend to be much more
homogeneous infrastructures than Grids and
this feature is not normally present. Only ad-
vanced cloud systems, such as hybrid clouds,
can present this characteristic in a way that
could be compared to Grids.

5. Non-centralized: Even though most large
scale distributed systems have global in-
frastructures that allow their different ele-
ments to cooperate (such as Globus [31] and
GLite [32] in Grids), sometimes resources ac-

tually belong to different owners that keep
a high degree of control over their property.
This includes from typical resource-sharing
Internet projects (like the Seti@home project
[33]) to modern Grids and hybrid clouds. The
degree of administrative decentralization de-
pends on the type of system (e.g. it is not
the same for the Grid5000 [34] platform as
for a typical hybrid cloud combining a local
Eucalyptus [35] infrastructure with Amazon
EC2 [36]).

Most large scale distributed systems are, in
consequence, not only distributed in nature, but
sometimes also heterogeneous, non-centralized
and in most cases composed of non-dedicated or
shared resources. Incorporating autonomic fea-
tures to such complex infrastructures is not a sim-
ple task. These properties, added to the fact that
these are large scale systems (and therefore they
have a large number of resources), bring the prob-
lem to a new level, and it does not seem a matter
of simply adapting existing distributed comput-
ing techniques. As it has been already explained,
features such as service orientation, heterogene-
ity and non-centralized control can be present
only up to a certain degree, depending on the
specific system studied. Our approach attempts
to analyze and model a scenario as generic as
possible and, therefore, all possible characteristics
are considered. It seems reasonable to assume that
a management system capable of dealing correctly
and efficiently with all five characteristics would
perform in a similar way on a less complex in-
frastructure.

When adopting an autonomic computing ap-
proach, the system complexity has direct impact
in its four main areas: self-configuration, self-
healing, self-optimization and self-protection.

3.1.1 Self-Conf iguration Issues

Most traditional distributed approaches (cluster
computing, centralized client-server architectures,
etc.) very often present desirable characteris-
tics such as stability, homogeneity or simple and
clear behavioral patterns. In these systems, re-
configuration is usually performed in an off-line
or semi-off-line operation mode and it frequently

J. Montes et al.

requires certain degree of redesign of the system’s
structure.

In Grids the situation is clearly different. Re-
sources are not only heterogeneous in nature
(something that already increases the complexity
of the configuration process) but also decentral-
ized and unpredictable, joining and leaving the
system at a high rate, and sometimes with variable
availability and reliability. Under these conditions
it seems clear that, in most cases, a fixed setup
would not be completely effective. These large
scale systems require a flexible and adaptable
configuration in order to correctly take advantage
of the available resources.

Clouds present yet another scenario. Com-
pared to Grids, typical clouds can be seen as
relatively more stable infrastructures, generally
composed of more homogeneous resources and
presenting a centralized administration. The de-
sired elasticity of cloud services requires the sys-
tem to dynamically adapt its configuration to the
changes in the use of the services being pro-
vided. The capability of the system to adapt to
these changes cannot be simply based on local,
resource-centered policies. In addition, the re-
sponsibility of addressing this issues is divided
between the system and the user application, de-
pending on the cloud service provisioning model
(IaaS, PaaS or SaaS). The possible coexistence
of many different applications and clients on the
same cloud elevates the complexity of this prob-
lem and makes clear the need of an efficient auto-
nomic approach.

3.1.2 Self-Healing Issues

As a consequence of the Grid natural charac-
teristics, resources can unpredictably appear and
disappear, network links can be temporarily or
permanently interrupted, parts of the system can
be overloaded without any control from the global
system administrators and so on. These events are
normally considered faults in traditional distrib-
uted systems, but in Grid computing they are part
of the environment’s typical behavior. Therefore,
is not so clear if these events should be regarded
as faults or not, even though they might have
a direct impact on its dependability. In clouds
the inherent shared nature of the infrastructure,

with different types of services, applications and
SLAs in place can experience analogous kinds
of resource faults, specially if the system is not
efficiently managed. The lesser degree of cohesion
of Grids and clouds compared with traditional
systems dilutes the concept of failure based on the
loss or degradation of resources. Grids and clouds
are commonly seen as an immense set of resources
that provide a series of services. Therefore their
proper operation should be understood in terms
of the quality of the services provided instead of
the state of its internal resources.

3.1.3 Self-Optimization Issues

A deep system’s behavior understanding enables
to develop advanced management policies and
strategies, designed to make the most of the sys-
tem resources available. In traditional distributed
computing the systems nowadays available (such
as most modern computational and storage clus-
ters) facilitate this task, allowing to design adapt-
able and scalable optimization techniques. These
optimization techniques usually rely on homoge-
neous, dependable, high-performance resources
(computing nodes, storage and network).

In Grid computing, however, the situation is
radically different. The massive amount of het-
erogeneous, non-dedicated and unpredictable re-
sources that interact during the system’s operation
creates a completely new and different frame-
work, forcing performance optimization tech-
niques to be adapted to these new conditions.
Clouds are somehow half-way between traditional
clusters and Grids. In this case the physical re-
sources that compose the infrastructure are gener-
ally more controlled and under the same manage-
ment policies. As in the case of self-conf iguration,
cloud complexity in this area is caused by the
diversity of service-level agreements for applica-
tions and clients sharing the system.

3.1.4 Self-Protection Issues

Given the distributed, heterogeneous and decen-
tralized nature of Grids, proactive identification
and protection from external attacks are crucial
aspects. In this sense, protecting each independent
resource (computing machine, network element,

How to Deal with the Complexity of Grid and Cloud

etc) is the necessary first step. This can be done
incorporating traditional, well tested techniques
to defend it from malicious usage and other se-
curity threats. The massive resource interaction
present in Grid systems can, however, render
these techniques insufficient, creating the need
for protection mechanisms focused also on global
aspects of the system. This is true in clouds as well,
where different applications share the same pool
of computational resources, expecting a secure en-
vironment. In this sense, virtualization techniques
are an important advance, creating sandbox en-
vironments that can effectively isolate distributed
applications. The extreme complexity of the sys-
tem (specially in the case of Grids) makes this task
difficult, requiring to study the system as a whole
and a deep analysis of the resources internal and
external interactions.

3.2 Single Entity vs. Multiple Entities

One of the most puzzling aspects of Grid and
cloud systems is that they are considered as single
elements in theory but, when it comes to practice,
in management related issues they are treated as
a set of independent, sometimes loosely related,
elements. It might be argued that these systems
are no simple ones and their great complexity
makes necessary to look after every one of its
parts; however, it could simply be a matter of
perspective.

To illustrate this idea, it is interesting first to
analyze the case of a single desktop computer.
This apparently much simpler system is commonly
regarded and managed as a single device but,
in fact, it is composed of a large set of sophis-
ticated elements that cooperate. Elements like
CPUs, memory and its controllers, video cards,
hard drives, network interfaces and so on have
distinctive functionalities and are technologically
complex, but are seen as parts of a single entity,
instead of a set of heterogeneous resources. The
secret behind this change of perspective is the use
of high-level tools (basically the operating system)
that provide an abstraction layer between the
real, heterogeneous and complex hardware and
the user. Several generic parameters are defined,
such as CPU load or network usage, in order to
express the system state in a standard manner.

Even though this abstraction carries some loss of
information, it enables the managing techniques
to be standardized, regarding all desktop com-
puters by the same parameters. If this concept is
applied to Grids and clouds, it becomes clear that
the proper tools for making this abstraction are
yet to be established.

3.3 Large Scale Distributed Systems
Management: Resource-Level vs.
Service-Level

Distinguished by their point of view, autonomic
management techniques in Grid and cloud sys-
tems can be split into two categories: Resource-
level and Service-level. In order to optimize perfor-
mance and increase system dependability the cor-
rect combination of these two types of techniques
should be applied; however, some important as-
pects must be considered.

Resource-level management involves the appli-
cation of standard techniques in each and every
one of the resources in the system. This might
seem quite straightforward, but a detailed analysis
reveals that most of the typical characteristics of
a large scale distributed system limit its efficiency.
The shared, heterogeneous and non-dedicated na-
ture of the system increase complexity, but it is
the non-centralized aspect the one that becomes
the great difficulty (specially in Grids and hybrid
clouds). In many cases, the global management
system has so limited control of each resource
that there is only a small set of suitable solutions
available, such as general directives and coarse-
grain strategies. To improve service dependabil-
ity on a computational Grid, for example, each
job can be simultaneously executed in several re-
sources, hoping that at least one of them finishes
it (basic redundancy). Advanced resource-level
management strategies (most of them directly in-
herited from traditional distributed computing)
can of course be implemented as well, such as
performance optimization mechanisms capable of
migrating jobs throughout the system, detailed se-
curity directives designed to protect against com-
plex coordinated attacks, etc. The high level of
resource control usually required in order to ap-
ply those techniques, however, would make it ex-
tremely hard to deploy them all over the system in

J. Montes et al.

an unified way. Therefore advanced resource-level
management will in most cases only be applied
locally (limited to corporative networks, parts of
a hybrid cloud, specific VOs, etc).

Service-level management, on the other hand,
deals with system-wide policies aiming to increase
performance, dependability and quality of the ser-
vices provided. This is particularly important in
cloud infrastructures, where the quality of service
is the key factor; however, as the management
policies have to deal with the whole system, it
is important to find ways to efficiently handle
this complexity. It is also important to understand
that, as the nature of the system is different from
resource-level management, the terms in which
this management is expressed will certainly dif-
fer. Service-level management can benefit from a
general representation of the system global state,
specially if it is service oriented like clouds and
most Grids.

4 A Service-Level System Management Model

Service-level management could strongly benefit
from a single entity point of view. To achieve this,
it is first necessary to formally define the system
behavior theoretical model to be used in this case.
In this section a service-level management model
is presented, inspired by the single entity perspec-

tive. This model is based on the basic concepts
and taxonomy of dependable systems by Avizienis
et al. [37]. Figure 1 presents the general case of this
model.

Following the single entity point of view, the
Grid or cloud can be considered as a single sys-
tem. From a theoretical perspective a Grid or a
cloud, being a system, presents a structure and a
function (or functions). The structure is the set
of components that bound together to form the
system, in this case the Grid or cloud resources
(computing and storage servers, network nodes,
etc). The function or functions are what the sys-
tem is intended for, and should be described in
its functional specification. The part of the func-
tion that is related to the interaction with exter-
nal entities (such as clients) can be seen as the
functionality being provided. This functionality is
presented by the service or set of services. The
interaction between the external clients and the
system is made through the service interface.

The analysis of the behavior presented by the
system internal structure (its resources) provides
the internal state of the system. It could describe
events happening in specific machines or network
links, but gives limited information about how
this affects the Grid or cloud global function. On
the other hand, the behavior observed through
the services interface (what the clients see) can
be analyzed to determine the system’s external

Fig. 1 Structure, function
and state: general case.
The system is divided into
structure (resources) and
function (services), but
both are responsible for
the system behavior,
which is expressed by its
total state.

System

FunctionStructure

BehaviorResources Service
Service
Interface

Total State

Internal
State

External
State

Clients

How to Deal with the Complexity of Grid and Cloud

state. This can provide information about how the
system’s function is being provided, but naturally
lacks the capabilities to give a more detailed in-
sight on the system structure situation. The com-
bination of both internal and external state pro-
duces the system total state, that describes the
system behavior in a complete way.

Resource-level management focuses on aspects
related to the system structure (resources) and,
therefore, affects only the internal behavior and
state. In order to achieve service-level capabilities
the whole total state must be considered, incorpo-
rating also the external state and its service related
information. This is a general model that can be
applied to any form of large scale distributed sys-
tem presenting the characteristics previously de-
scribed. The cases of Grids and clouds are studied
in detail in the following subsections.

4.1 Service-Level Total State Model Case I:
The Grid

When analyzing the specific scenario of a Grid
infrastructure, it is clear that its main source of
complexity is located in the system resources, i.e.

the machines and network links that the system
is built on top of. This resource infrastructure is
usually divided into virtual organizations or other
similar kind of administrative domains. These are
designed to facilitate management tasks such as
privacy and coexistence of multiple simultaneous
security policies and not focused on performance
or dependability. Grid resources are shared be-
tween partners and usually there is no superior
organization with full system management rights
over the entire infrastructure.

Figure 2 shows a more detailed version of the
Service-level total state model for the specific case
of Grid systems. Autonomic management tools
need to be focused on this internal complexity
and also how it affects the external state observed
through the service interface.

4.2 Service-Level Total State Model Case II:
The Cloud

When studying the sources of system complex-
ity, clouds can be seen as the opposite to Grids.
To avoid all possible problems and conflicts that
the non-centralized nature of the Grid can cause,

Fig. 2 Structure, function
and state: the Grid case.
Here the complexity of
the system structure is
detailed, since it is its
main source of
complexity

Grid

FunctionStructure

Behavior

Service
Service
Interface

Total State

Internal
State

External
State

Clients

Resources

V.O.
A

V.O.
Z

V.O.
B

...

......

J. Montes et al.

typical clouds are constructed over a more tra-
ditional distributed systems infrastructure, on a
typical cluster-like data center. This simplifies re-
source management, as usually cloud resources
are more or less homogeneous and with central-
ized administrative control. This more controlled
infrastructure enables to develop and provide a
much more sophisticated set of services, and this
is where the main source of cloud complexity
appears. Common cloud services incorporate ad-
vanced characteristics such as complex SLAs and
system abstraction through virtualization. Service
complexity can be present in two ways:

– Complexity within the service: This is the
most typical source of complexity in cloud
systems. It is caused by the coexistence of
several clients/consumers making use of the
same service. The system must provide ex-
pected quality of service for all consumers
regardless of the specific conditions and use
pattern of each one of them. A common ex-
ample of this can be seen in any commercial
cloud providing IaaS or PaaS web hosting
services (e.g. Amazon EC2 or Google App

Engine [38]). In this scenario many different
cloud consumers could be using the cloud re-
sources to run different web applications with
different configurations (number of VMs, etc)
and SLAs (maximum number of simultane-
ous connections, expected latency, etc). The
cloud management system has to handle these
situations.

– Complexity between services: It refers to the
coexistence and interaction of different types
of services in the same cloud (e.g. a web appli-
cation service and a data storage service).

Figure 3 shows a more detailed version of the
Service-level total state model for the specific case
of cloud systems. Autonomic management tools
need to be focused on this external complexity and
also how it is related to the state of the system
resources.

4.3 Service-Level Autonomic Management

Taking the presented theoretical model as a basis,
we can analyze now how the different autonomic

Fig. 3 Structure, function
and state: the cloud case.
In this type of systems the
main source of
complexity is usually the
advanced service or set of
services provided. The
system must handle
multiple applications and
service interfaces

Service A
Interface

Cloud services

 ...

 ...

Cloud

FunctionStructure

Resources

Behavior

Total State

Internal
State

External
State

Clients

Service A

App
a1

App
an

Service Z Service Z
Interface

...

...

...

App
a2

App
z1

App
zn

App
z2

How to Deal with the Complexity of Grid and Cloud

computing areas can benefit from a total state,
service-level approach.

Self-conf iguration focuses on resource deploy-
ment and machine specific configuration. It deals
with issues such as what should be installed, where
and the deployment order, in order to achieve the
system service expectations. It is, therefore, inten-
sively related to the system structure and internal
state. In this case a resource-level approach is
clearly indicated, since it contains all the resource-
related relevant information needed.

Self-protection focuses on resource weak points
as well as global security threats. A service-
level approach would strongly benefit protection
against external, global attacks, specially those
aiming at complex resource and service interac-
tion vulnerabilities. Nevertheless, it would lack
the necessary information to protect the system
against more localized attacks, specially those
aimed at single resources. An hybrid approach,
combining elements of both resource-level and
service-level management should be advisable in
this case.

As explained in Section 3, self-healing is prob-
ably the autonomic computing area most affected
by large scale distributed systems special charac-
teristics. Grid and cloud services fault tolerance
issues are directly related to the system global
state and require a service-level management ap-
proach in order to be properly handled. The sys-
tem unique features require basic fault tolerance
concepts to be redefined, eliminating the possibil-
ity of directly inheriting them from traditional dis-
tributed systems. This is explained in more detail
below.

Finally, self-optimizing is focused on perfor-
mance and quality of service issues. These can be
equally related to the system internal or exter-
nal state. The Grid or cloud performance is di-
rectly dependent on the system resources, but also
on the services usage patterns. Additionally, the
system complexity once again becomes an issue,
making any attempt of self-optimizing autonomic
management from a resource-level point of view
extremely complicated. Service-level management
seems to be the ideal approach here, as it handles
system complexity without being overwhelmed by
it, focusing at the same time in the system’s total
state.

As self-healing and self-optimizing are the
two autonomic computing areas that can benefit
mostly from a service-level, total state mode,
they are studied in more detail in the following
subsections.

4.3.1 Self-Healing: Failures, Errors and Faults

It can be said that a large scale distributed sys-
tem delivers correct service when the behavior
observed through the service interface follows the
original functional specification. The total state
associated to correct service is called correct state.
When the observed behavior deviates from the
functional specification the system moves to an
incorrect state. The transition from a correct state
to an incorrect state is called a service failure,
often abbreviated simply as a failure.

An error is the part of the total state of the sys-
tem that may lead to a subsequent service failure.
An error is not an incorrect state itself, but may
possibly lead to an incorrect one and therefore is
a potentially dangerous situation. The event that
causes an error in the system’s total state is called
a fault.

This initial set of basic definitions can serve as
a starting point for development of self-healing ca-
pabilities. Its is important to remember that most
modern large scale distributed systems (specially
clouds) deal with sophisticated service provision-
ing models. The concept of quality of service and
the different SLAs on which cloud services can
be provided has to be incorporated in the model.
If we analyze this from a single-entity, total state
point of view, it is clear that each system state has
to be associated with a specific QoS. Depending
on how this is defined and measured, more than
one state could share the same QoS, creating
subsets of system states with equivalent qualities
of service, that could be associated with specific
SLAs.

Figure 4 illustrates an example of the total state
of a system, represented in the form of a finite
state machine [39, 40]. States are grouped in three
subsets that indicate distinguishable differences
in the quality of the services provided (QoS1,
QoS2 and QoS3). These subsets could be asso-
ciated with different SLAs, at the discretion of
the cloud services provider. The incorrect state

J. Montes et al.

S3

S4

S1

S7

S6

S5

S2

QoS1

QoS2

QoS3

Correct
service

Incorrect
service

Error

Fault Failure

Fig. 4 An example of total state model including different
system states, levels of QoS, possible faults, errors and
failures

(S7) is excluded from these QoS subsets because
it represents a system state where the QoS is not
acceptable by any standards (maybe the service is
not even being provided).

The use of this fault model allows to model
single entity system failures and qualities of ser-
vice simultaneously and provides the basic tools
to build fault tolerance and QoS mechanisms.

4.3.2 Self-Optimizing: Performance and Quality
of Service

System performance is usually determined by the
amount of useful work accomplished compared
to the time and resources devoted to it. In order
to optimize this ratio, the system must manage
the available resources wisely. In large, hetero-
geneous and dynamic system such as Grids and
clouds, resource interaction becomes a critical
issue, and effectively managing each component
separately does not guarantee and improved over-
all performance. As in other less complex dis-
tributed and non-distributed scenarios (clusters,
regular computers...), a global, service-level per-
spective is required in order to identify system
bottleneck and other performance issues.

Quality of service means not only to achieve
higher performance, but to sustain and guarantee
a certain level (or levels) of it. This introduces
the ideas of maintaining a specific, constant per-
formance through time and providing the system
with the necessary tools to ensure it. As this is
directly related to performance, the previous rea-
soning applies directly also in this case, making
clear the need for a service-level, single entity ap-
proach. Additionally, guaranteeing system perfor-
mance (and therefore providing quality of service)
creates the need for self-adapting techniques, in a
very similar way to the self-healing area.

5 The Behavioral Modeling Cycle

A behavioral modeling process enables to create
a total state model of a large scale distributed
system. This process should present the following
properties:

1. Based on observation. In order to identify
the different aspects that have an impact on
the system behavior, the process has to be at
least partially based on data gathered from
resource monitoring, service accounting, per-
formance logs and other information sources.
This ensures the total state modeled is consis-
tent with the system operation.

2. Completeness. The model generated must
provide information of both internal and ex-
ternal states. Since the whole total state of
the system has to be described, the behavioral
model produced has to describe relevant as-
pects of both structure (resources) and func-
tion (services) of the Grid or cloud.

3. Relevance to service: The model generated
must be relevant to the service being pro-
vided. Since the ultimate goal of Grids and
clouds is providing a service, the behavioral
model generated by the process has to incor-
porate information about how this service is
being provided in terms that can be related to
QoSs, SLAs and so on.

Aside from these three characteristics, the
behavioral modeling process can be based on

How to Deal with the Complexity of Grid and Cloud

Behavioral
analysis

Human expert
analysis

Total state
model

Autonomic
capabilities

Large scale
distributed system

System & service monitoring
 Performace logs
 ...

Fig. 5 The behavioral modeling cycle

analytical models, statistical analysis, ad hoc ar-
chitectures, data mining, or any other formalism
desired.

The system behavior can be observed and mod-
eled. The result of this analysis can be used to de-
velop autonomic capabilities and in consequence
improve the system performance, dependability,
QoS, etc. This process can be performed as a loop,
improving the system autonomic capabilities. In
each iteration of this behavioral modeling cycle
(depicted in Fig. 5) the behavioral modeling stage
can be focused on the particular area of auto-
nomic computing that needs to be developed (self-
optimization, self-healing, etc.), generating new
useful understanding of the system each time.

5.1 Relation to the MAPE Loop

The MAPE loop (Monitor, Analize, Plan, Exe-
cute) is the general process followed by autonomic
system elements [6]. It can be seen in Fig. 6, along
with all the other main autonomic components.
There is a strong relation between the MAPE loop
and the behavioral modeling cycle. The first de-
scribes how an autonomic component works and
the second what needs to be done to create it. The
key of this relation is the Knowledge element of
the autonomic component. This Knowledge serves
as the heart of the component, organizing the four
loop stages and giving them purpose. The behav-
ioral modeling cycle makes it possible to obtain

Managed resource

Resource touchpoint

Autonomic manager

Monitor

Analyze

Execute

Plan

Knowledge

Sensors Effectors

Fig. 6 Autonomic components and the MAPE loop: Mon-
itor, Analize, Plan, Execute. The loop (and the Knowledge
element) is part of the autonomic manager that operates
the managed resource through a resource touch-point.
The sensors allow the autonomic element to observe the
resource and the effectors to dynamically control it

this knowledge in a way that is based on observed
behavior, complete and relevant to the service
being provided (the three main characteristics of
any behavioral model). The connection of these
two linked processes is the basis for developing
autonomic capabilities in large scale distributed
systems.

6 Cases of Study

In Sections 3, 4 and 5 our proposed autonomic
management theoretical model is presented, de-
scribed and analyzed. Since this is a new contri-
bution, it does not exist yet a real Grid or cloud
management project that specifically and/or com-
pletely follows our theoretical model. Our model
has been derived and developed from the study of
existing techniques, trying to define and formalize
a basic common theoretical framework. Therefore
there are many existing Grid and cloud manage-
ment that share some of these ideas. Most of these
initiatives have been presented in Section 2. There
are some among them that can be studied very
clearly in terms of our model, although they only
cover some areas of it and could be considered

J. Montes et al.

more specific or limited to certain scenarios. This
section studies these examples of known Grid and
cloud projects in order to (i) illustrate how the
ideas behind our theoretical model can be suc-
cessfully applied in real Grid and cloud scenarios
(they have been partially applied already) and
(ii) analyze how the application of the full extent
of our theoretical model can benefit even more
large scale distributed systems management.

6.1 Claudia

Most of cloud systems developed so far follow
an IaaS approach. Many well-known cloud initia-
tives, such as Amazon EC2, Eucalyptus, Open-
Nebula [41] or Nimbus [42], are infrastructures
that can be used to execute HPC applications.
IaaS allows consumers to manually allocate VMs
in terms of the use of their own applications. Thus,
these IaaS systems can be seen as an utility where
consumers run their applications. Nevertheless,
whereas consumers are interested in aspects of the
application life-cycle like application deployment
or scalability, IaaS cloud providers are focused on
the internal aspects of the infrastructure. The re-
sulting complexity can have an impact on manage-
ment tasks such as VMs allocation, which can have
then an impact on the final QoS the consumer
perceives.

To reduce complexity and improve cloud man-
agement, cloud platforms have to evolve from a
basic infrastructure administration to autonomic
service management. The development of Claudia
[43], as the IaaS Cloud Service Manager of the
EU-funded RESERVOIR project [44], is a first
step in this direction. Claudia is located on top of
the IaaS infrastructure and it controls the service
life-cycle, dynamically allocating VMs regarding
SLAs and other business policies. It relies on a
service manifest where the service components,
requirements, QoS and business policies are de-
clared. Claudia developers have identified four
basic goals [43], which clearly fit with some aspects
of our proposed autonomic management model:

1. Service abstraction level oriented to define
and manage services including relations be-
tween components to provide a deployment

order. This is a starting point to automatically
deploy applications in a self-configuring way.

2. Automatic Scalability. How the service scales
is a key factor of the QoS provided to the con-
sumer. In Claudia consumers define the best
way the application has to be scaled regarding
their own experience and knowledge.

3. Smart Scaling. This refers to the specification
of the rules that constrain the automatic scal-
ing. The application of self-optimizing tech-
niques based on these rules is advisable since
there are more factors that can impact on its
performance.

4. Avoiding Cloud Vendor Lock-in. Nowadays
each cloud provider has its own non-standard
interface. This makes it difficult to share
data and services between different cloud
providers. It would be interesting to seemingly
be able to use different providers according to
business policies. When this effective interop-
erability occurs,1 the selection of the suitable
cloud providers would be made in an auto-
nomic way.

Claudia works as an abstraction layer of the
IaaS infrastructure to control services as a whole,
and therefore is a clear example of the single-
entity vision we are proposing. The idea is to
change the usual way consumers interact with
clouds. Instead of dealing with VMs management
on different cloud platforms (somehow similar to
resource-level management), an abstract vision of
the cloud is used for application management. In
this case, this vision is related to the application
life-cycle, which is the part consumers are inter-
ested in. Nevertheless, in order to represent the
total state of the service, both its external and
internal state are required. Claudia is placed on
top of the IaaS infrastructure and therefore it
has knowledge only of the external state (through
the service interface). The internal state of the
IaaS infrastructure (how the service is working)
is hidden inside the RESERVOIR project archi-
tecture (in fact, Open Nebula is used as internal
Virtual Execution Environment Manager). Thus,

1The group Distributed Management Task Force is cur-
rently working on it.

How to Deal with the Complexity of Grid and Cloud

applying our proposed theoretical model to this
case study could help to better understand the
system and improve its management. In any case,
Claudia stands as a promising starting point for
cloud autonomic management.

6.2 GloBeM

In 2010 we presented Global Behavior Model-
ing (GloBeM) [45], a methodology designed to
identify and explain regularities in global Grid
behavior. Its main objective is to build an abstract,
descriptive model of the global system state of the
Grid. This enables the model to implicitly describe
the interactions between entities, which has the
potential to unveil non-trivial dependencies and
other significant behavioral aspects. These unique
features make GloBeM particularly useful in Grid
management, especially because it provides the
means to capture complex interactions among
components in a simple yet comprehensive finite
state machine (FSM) behavioral model. These
states can be directly seen as distinctly identified
behavioral patterns.

GloBeM follows a set of procedures in or-
der to build such a model, starting from mon-
itoring information that corresponds to the ob-
served behavior. These basic monitoring data are
then aggregated into global monitoring parame-
ters, representative of the global Grid behavior
instead of each Grid resource separately. This
aggregation can be performed in different ways,
but it normally consists in calculating global sta-
tistic descriptors (mean, standard deviation, skew-
ness, kurtosis, etc.) values of each basic moni-
toring parameter for all Grid resources present.
This ensures that global monitoring metrics are
still understandable from a human perspective.
Global information undergoes a complex analysis
process in order to produce a global behavior
representation. This process is strongly based on
machine learning and other knowledge discov-
ery techniques, such as virtual representation of
information systems [46, 47]. In [48], the tech-
niques needed to create global behavior predic-
tion models for Grid systems were defined. Global
behavior prediction benefits Grid management,
specially in areas such as fault tolerance or job
scheduling.

Although GloBeM has been designed for Grid
systems, it has been successfully used to analyze
clouds too. For instance, in [49] it is shown how
GloBeM can be used to obtain a technique to
address a stable throughput for each individual
access to the cloud storage service BlobSeer [50].
Substantial improvements in the stability of in-
dividual data read accesses under MapReduce
workloads were achieved.

From the perspective of our contribution,
GloBeM can be used as a specific technique for
behavioral modeling. Since GloBeM uses infor-
mation from monitoring both internal resources
(system structure) and system services (system
function), its model can serve as a representation
of the total state of the system. The use of knowl-
edge discovery techniques to create it reduces
the possible impact of a biased analysis manually
performed by a system administrator.

GloBeM models are tailored for a specific
configuration of resources and services, and can-
not be transported from one system to another.
This enables them to precisely model the char-
acteristics of each systems, but at the expense of
becoming less general. The GloBeM methodology
could be successfully applied to many different
systems, but it would generate a completely dif-
ferent model for each one of them.

7 Conclusions

Nowadays the use of large scale distributed sys-
tems enables users to execute demanding com-
puting and data-intensive applications, renting
resources suitable for their application needs. In
general, Grid and cloud systems provide to some
extent user-friendly interfaces that improve the
interaction with the user, hiding behind them the
inner complexity of the system. From the point
of view of resource providers, however, the man-
agement of such a complex infrastructure is some-
times overwhelming. This complicates achieving
the desired levels of dependability, quality of ser-
vice, etc.

The contribution presented in this paper con-
stitutes an important step in the construction of
a theoretical formalism that helps to enhance the
management of these infrastructures. Combining

J. Montes et al.

and expanding the ideas gathered from the study
of many past and current system management
techniques, we have defined a generic theoret-
ical framework that can be used as a basis for
the development of efficient large scale distrib-
uted systems. This formalism provides an abstract
understanding of the underlying large scale sys-
tem, which unlike other models, allows us to ana-
lyze and manage the system as a single entity. The
main advantages of our approach are its complete-
ness and simplicity, which makes the application
of efficient management techniques easier. More-
over, our approach is independent of the specifics
of each kind of system (resources, services, etc.).

One of the main motivations for developing
this formalism has been to provide the theoretical
foundations of a single entity vision of a Grid
or a cloud. So far the abstraction mechanisms
being used (specially in cloud computing) provide
only a biased, incomplete vision of the system,
presenting only information related to the exter-
nal state of the system. We have identified and
explained the need of a total state model that in-
corporates internal as well as external state infor-
mation. This model may not be necessary from the
point of view of service-client interaction, but it
is definitely required from a system management
perspective. Nowadays the high-level, external vi-
sion and the low-level, resource-based vision are
separated. We defend the need of combining them
to achieve optimal performance. The structure
and function of a system cannot be separated,
since they are both parts of its behavior. The con-
ceptual representation of this idea is the proposed
service-level total state model.

The knowledge obtained from analyzing and
understanding the complete system behavior can
be used to develop efficient management tech-
niques where autonomic computing play a key
role. In this paper we have proposed and jus-
tified the use of autonomic computing to manage
extremely complex systems such as Grids and
clouds. We have analyzed the possible issues that
may emerge in the different areas of autonomic
computing and how to address them, proposing
theoretical procedures and explaining the implica-
tions that using a total state model may have. Our
analysis suggests that self-configuration requires
a resource level approach and self protection a

hybrid approach. Self-healing and self-optimizing
are the two areas that can benefit most from
a service level, total state model. We have also
proposed the use of a behavioral modeling cycle
to continuously improve the system autonomic ca-
pabilities. This cycle defines the basic theoretical
sequence of procedures that have to be performed
in order to develop the desired system features.
We have integrated this cycle in the typical auto-
nomic process, detailing its relation to other basic
autonomic concepts such as the MAPE loop.

Even though, to the authors’ knowledge, no
such formal model as the one here presented ex-
ists, some past and current large scale distributed
management initiatives seem to follow a similar
direction. During the development of our model
we have studied in detail many of them, and we
have analyzed here two examples (Claudia and
GloBeM) in order to illustrate how similar basic
ideas are already being used in Grids and clouds.
None of these initiatives constitutes a theoretical
framework for the generic application of man-
ageable and useful management techniques. Our
main objective in this paper has been to develop a
unified, generic theoretical formalism to define a
single entity vision of a Grid or a cloud that can be
used for autonomic management purposes.

Acknowledgements This work is partially supported by
the Madrid Regional Authority (Comunidad de Madrid),
the Universidad Rey Juan Carlos under the URJC-CM-
2010-CET-5185 contract, the Madrid Supercomputing and
Visualization Center (CeSViMa) and the Marie Curie Ini-
tial Training Network (MCITN) “SCALing by means of
Ubiquitous Storage (SCALUS)”.

References

1. TOP500 Supercomputing Sites: http://www.top500.org/
(online). Accessed Jul 2012

2. Kesselman, C., Foster, I. (eds.): L The Grid: Blue-
print for a New Computing Infrastructure. Morgan
Kaufmann, San Mateo, CA (1998)

3. Weiss, A.: Computing in the clouds. Networker 11(4),
16 (2007)

4. Foster, I.: What is the Grid? A three point checklist.
Grid Today 1(6). http://www-fp.mcs.anl.gov/∼foster/
Articles/WhatIsTheGrid.pdf. (2002)

5. Foster, I.T., Zhao, Y., Raicu, I., Lu, S.: Cloud comput-
ing and Grid computing 360-degree compared. CoRR
abs/0901.0131 (2009)

http://www.top500.org/
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://arXiv.org/abs/0901.0131

How to Deal with the Complexity of Grid and Cloud

6. IBM: An Architectural Blueprint for Autonomic Com-
puting, 4th edn. IBM Autonomic Computing White
Paper (2006)

7. Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: an ar-
chitecture for a resource management and scheduling
system in a global computational Grid. In: Proceedings
of the Fourth International Conference/Exhibition on
High Performance Computing in the Asia-Pacific Re-
gion, vol. 1, pp. 283–289 (2000)

8. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy
and survey of Grid resource management systems for
distributed computing. Softw. Pract. Exp. 32(2), 135
(2002)

9. Siddiqui, M., Fahringer, T.: GridARM: Askalon’s Grid
resource management system. In: Advances in Grid
Computing - EGC 2005 - Revised Selected Papers.
Lecture Notes in Computer Science, vol. 3470, pp. 122–
131. Springer Verlag GmbH, Amsterdam, Netherlands.
ISBN 3-540-26918-5 (2005)

10. Sánchez, A., Montes, J., Pérez, M.S., Cortes, T.: An
autonomic framework for enhancing the quality of data
Grid services. Future Gener. Comput. Syst. 28(7), 1005
(2012)

11. Maurer, M., Breskovic, I., Emeakaroha, V., Brandic, I.:
Revealing the MAPE loop for the autonomic manage-
ment of cloud infrastructures. In: 2011 IEEE Sympo-
sium on Computers and Communications (ISCC), pp.
147–152 (2011)

12. Solomon, B., Ionescu, D., Litoiu, M., Iszlai, G.: De-
signing autonomic management systems for cloud com-
puting. In: 2010 International Joint Conference on
Computational Cybernetics and Technical Informatics
(ICCC-CONTI), pp. 631–636 (2010)

13. Open Science Grid: https://www.opensciencegrid.org/
bin/view (online). Accessed Jul 2012

14. TeraGrid Archives: https://www.xsede.org/tg-archives
(online). Accessed Jul 2012

15. Gagliardi, F., Jones, B., Grey, F., Bgin, M.E.,
Heikkurinen, M.: Building an infrastructure for sci-
entific Grid computing: status and goals of the egee
project. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
363(1833), 1729 (2005)

16. XSEDE – Home: https://www.xsede.org/ (online). Ac-
cessed Jul 2012

17. EGI-InSPIRE: http://www.egi.eu/about/egi-inspire/
(Online). Accessed Jun 2012

18. Dongarra, J.J., Gentzsch, W. (eds.): Computer Bench-
marks. Elsevier Science Publishers B. V., Amsterdam,
The Netherlands, The Netherlands (1993)

19. Dikaiakos, M.D.: Grid benchmarking: vision, chal-
lenges, and current status: research articles. Concurr.
Comput.-Pract. Exp. 19(1), 89 (2007)

20. Frumkin, M., der Wijngaart, R.F.V.: NAS Grid bench-
marks: a tool for Grid space exploration. Cluster Com-
put. 5(3), 247 (2002)

21. Tsouloupas, G., Dikaiakos, M.D.: Gridbench: a tool
for the interactive performance exploration of Grid
infrastructures. J. Parallel Distrib. Comput. 67(9), 1029
(2007)

22. Ogura, D.R., Midorikawa, E.T.: Characterization of
scientific and transactional applications under multi-

core architectures on cloud computing environment.
In: Proceedings of the 2010 13th IEEE International
Conference on Computational Science and Engineer-
ing. CSE ’10, pp. 314–320. IEEE Computer Society,
Washington, DC, USA (2010)

23. Bailey, D.H., Barszcz, E., Barton, J.T., Browning,
D.S., Carter, R.L., Dagum, L., Fatoohi, R.A., Fred-
erickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon,
H.D., Venkatakrishnan, V., Weeratunga, S.K.: The nas
parallel benchmarks - summary and preliminary re-
sults. In: Proceedings of the 1991 ACM/IEEE Con-
ference on Supercomputing. Supercomputing ’91, pp.
158–165. ACM, New York, NY, USA (1991)

24. TPC: TPC-H http://www.tpc.org/tpch/ (Online). Ac-
cessed Jul 2012

25. van der Aalst, W.M.P., Bratosin, C., Sidorova, N.,
Trcka, N.: A reference model for Grid architec-
tures and its validation. Concurr. Comput.-Pract. Exp.
22(11), 1365 (2010)

26. Chan, W.K., Mei, L., Zhang, Z.: Modeling and testing
of cloud applications. In Kirchberg, M., Hung, P.C.K.,
Carminati, B., Chi, C.H., Kanagasabai, R., Valle, E.D.,
Lan, K.C., Chen L.J. (eds.) APSCC, pp. 111–118. IEEE
(2009)

27. Östberg, P.O., Elmroth, E.: Increasing flexibility and
abstracting complexity in service-based Grid and cloud
software. In: Proceedings of CLOSER 2011 - Interna-
tional Conference on Cloud Computing and Services
Science, pp. 240–249. SciTePress (2011)

28. Stockinger, H.: Defining the Grid: a snapshot on the
current view. J. Supercomput. 42(1), 3 (2007)

29. Twenty-One Experts Define Cloud Computing: http://
cloudcomputing.sys-con.com/node/612375/print (online).
Accessed Jul 2012

30. Vaquero, L.M., Rodero-Merino, L., Caceres, J.,
Lindner, M.: A break in the clouds: towards a
cloud definition. Comput. Commun. Rev. 39(1), 50
(2009)

31. The Globus Alliance: http://www.globus.org (online).
Accessed Jul 2012

32. gLite: Lightweight Middleware for Grid Computing.
http://glite.cern.ch/ (online). Accessed Sept 2011

33. Seti@home: The Search for ExtraTerrestrial In-
teligence. http://setiathome.ssl.berkeley.edu (online).
Accessed Jul 2012

34. Jégou, Y., Lantéri, S., Leduc, J., Noredine, M., Mornet,
G., Namyst, R., Primet, P., Quetier, B., Richard, O.,
Talbi, E.G., Iréa, T.: Grid’5000: a large scale and highly
reconfigurable experimental Grid testbed. Int. J. High
Perform. Comput. Appl. 20(4), 481 (2006)

35. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,
Soman, S., Youseff, L., Zagorodnov, D.: The euca-
lyptus open-source cloud-computing system. In: Pro-
ceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CC-
Grid 2009), pp. 124–131. IEEE Computer Society
(2009)

36. Varia, J.: Architecting for the Cloud: Best Practices.
Amazon White Paper (2010)

37. Avizienis, A., Laprie, J.C., Randell, B., Landwehr,
C.: Basic concepts and taxonomy of dependable and

https://www.opensciencegrid.org/bin/view
https://www.opensciencegrid.org/bin/view
https://www.xsede.org/tg-archives
https://www.xsede.org/
http://www.egi.eu/about/egi-inspire/
http://www.tpc.org/tpch/
http://cloudcomputing.sys-con.com/node/612375/print
http://cloudcomputing.sys-con.com/node/612375/print
http://www.globus.org
http://glite.cern.ch/
http://setiathome.ssl.berkeley.edu

J. Montes et al.

secure computing. IEEE Trans. Dependable Secure
Compu. 1(1), 11 (2004)

38. Google App Engine - Google Code: http://code.
google.com/appengine/ (online). Accessed Jul 2012

39. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduc-
tion to Automata Theory, Languages, and Computa-
tion, 2nd edn. Addison Wesley (2000)

40. Carroll, J., Long, D.: Theory of Finite Automata with
an Introduction to Formal Languages. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1989)

41. Sotomayor, B., Montero, R.S., Llorente, I.M.,
Foster, I.: Virtual infrastructure management in
private and hybrid clouds. IEEE Iternet Comput. 13,
14 (2009)

42. Keahey, K., Figueiredo, R., Fortes, J., Freeman, T.,
Tsugawa, M.: Science clouds: early experiences in cloud
computing for scientific applications. In: Proceedings
of the 2008 Cloud Computing and Its Applications 2008
(CCA-08) (2008)

43. Rodero-Merino, L., Vaquero, L.M., Gil, V., Galn, F.,
Fontn, J., Montero, R.S., Llorente, I.M.: From in-
frastructure delivery to service management in clouds.
Future Gener. Comput. Syst. 26(8), 1226 (2010)

44. Rochwerger, B., Breitgand, D., Levy, E., Galis, A.,
Nagin, K., Llorente, I.M., Montero, R., Wolfsthal, Y.,
Elmroth, E., Cáceres, J., Ben-Yehuda, M., Emmerich,
W., Galán, F.: The RESERVOIR model and architec-

ture for open federated cloud computing. IBM J. Res.
Develop. 53, 535 (2009)

45. Montes, J., Sánchez, A., Valdés, J.J., Pérez, M.S.,
Herrero, P.: Finding order in chaos: a behavior model
of the whole Grid. Concurr. Comput.-Pract. Exp. 22,
1386 (2010)

46. Valdés, J.J.: Similarity-based heterogeneous neurons in
the context of general observational models. Neural
Netw. World 12, 499 (2002)

47. Valdés, J.J.: Virtual reality representation of informa-
tion systems and decision rules. Lect. Notes Artif. In-
tell. 2639, 615 (2003)

48. Montes, J., Sánchez, A., Pérez, M.S.: Grid global
behavior prediction. In: Proceedings of the 11th
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2011), pp. 124–
133. IEEE Computer Society (2011)

49. Montes, J., Nicolae, B., Antoniu, G., Sánchez, A.,
Pérez, M.S.: Using global behavior modeling to im-
prove qos in cloud data storage services. In: 2nd IEEE
International Conference on Cloud Computing Tech-
nology and Science (CloudCom 2010), pp. 304–311.
IEEE Computer Society (2010)

50. Nicolae, B., Antoniu, G., Bougé, L., Moise, D., Carpen-
Amarie, A.: Blobseer: next-generation data manage-
ment for large scale infrastructures. J. Parallel Distrib.
Comput. 71, 169 (2011)

http://code.google.com/appengine/
http://code.google.com/appengine/

	Riding Out the Storm: How to Deal with the Complexity of Grid and Cloud Management
	Abstract
	Introduction
	Related Work
	Autonomic Management of Large Scale Distributed Systems
	Autonomic Management Issues in Grid and Cloud Computing
	Self-Configuration Issues
	Self-Healing Issues
	Self-Optimization Issues
	Self-Protection Issues

	Single Entity vs. Multiple Entities
	Large Scale Distributed Systems Management: Resource-Level vs. Service-Level

	A Service-Level System Management Model
	Service-Level Total State Model Case I: The Grid
	Service-Level Total State Model Case II: The Cloud
	Service-Level Autonomic Management
	Self-Healing: Failures, Errors and Faults
	Self-Optimizing: Performance and Quality of Service

	The Behavioral Modeling Cycle
	Relation to the MAPE Loop

	Cases of Study
	Claudia
	GloBeM

	Conclusions
	References

