
Mission Possible: Unify HPC and Big Data Stacks
Towards Application-Defined Blobs at the Storage Layer

Pierre Matria, Yevhen Alforovb, Álvaro Brandona, Marı́a S. Péreza, Alexandru Costanc, Gabriel Antoniuc,
Michael Kuhnd, Philip Carnse, Thomas Ludwigb

aUniversidad Politécnica de Madrid, Madrid, Spain
bDeutsches Klimarechenzentrum, Hamburg, Germany

cInria Rennes, France
dUniversität Hamburg, Hamburg, Germany

eArgonne National Laboratory, Lemont, IL, USA

Abstract

HPC and Big Data stacks are completely separated today. The storage layer offers opportunities for convergence,
as the challenges associated with HPC and Big Data storage are similar: trading versatility for performance. This
motivates a global move towards dropping file-based, POSIX-IO compliance systems. However, on HPC platforms
this is made difficult by the centralized storage architecture using file-based storage. In this paper we advocate that the
growing trend of equipping HPC compute nodes with local storage redistributes the cards by enabling object storage
to be deployed alongside the application on the compute nodes. Such integration of application and storage not only
allows fine-grained configuration of the storage system, but also improves application portability across platforms. In
addition, the single-user nature of such application-specific storage obviates the need for resource-consuming storage
features like permissions or file hierarchies offered by traditional file systems. In this article we propose and evaluate
Blobs (Binary Large Objects) as an alternative to distributed file systems. We factually demonstrate that it offers
drop-in compatibility with a variety of existing applications while improving storage throughput by up to 28%.

1. Introduction

HPC and Big Data platforms are carving new data
storage models. This is made necessary by the ever-
increasing scale of the computation and of the datasets
ingested and produced by large-scale applications. The
success of key-value stores [1, 2, 3, 4] or block stor-
age systems [5, 6] on Clouds, and the advent of burst
buffers [7, 8, 9, 10] or advanced I/O libraries [11, 12, 13]
for HPC clearly highlight this need.

At the heart of these different methods is the move
from legacy POSIX-compliant storage systems towards
simple storage paradigms designed especially for one
purpose, trading versatility for performance. Indeed,

Email addresses: pmatri@fi.upm.es (Pierre Matri),
alforov@dkrz.de (Yevhen Alforov), abrandon@fi.upm.es
(Álvaro Brandon), mperez@fi.upm.es (Marı́a S. Pérez),
alexandru.costan@irisa.fr (Alexandru Costan),
gabriel.antoniu@inria.fr (Gabriel Antoniu),
michael.kuhn@informatik.uni-hamburg.de (Michael Kuhn),
carns@mcs.anl.gov (Philip Carns), ludwig@dkrz.de
(Thomas Ludwig)

POSIX-IO imposes functionality such as hierarchical
namespaces or file permissions. While these features
are often provided for convenience, they are in practice
rarely needed by modern applications and can signifi-
cantly hinder the storage performance. Indeed, the li-
braries and frameworks commonly used to access the
storage on HPC [14, 15] and Big Data platforms [16, 17]
provide relaxed semantics compared to those of the un-
derlying file system.

Yet, deploying new storage models on HPC platforms
used to be hard or simply impossible. Indeed, paral-
lel file systems such as Lustre or GPFS on HPC have
been the cornerstone of HPC storage for decades and are
likely to remain so in the next few years. This is largely
explained by the high level of versatility and support for
legacy applications, which is without comparison with
that of purpose-built storage systems. In contrast, this is
easy on cloud computing platforms such as [18, 19, 20],
which enable users to deploy and configure exactly the
storage system they need on compute nodes.

Application-defined storage on HPC comes as a so-
lution. It leverages local storage on compute nodes

Preprint submitted to Future Generation Computer Systems December 31, 2017



available in a growing number of leadership-class su-
percomputers [21, 22] to allow scientists to deploy tran-
sient data services alongside the application. Such ser-
vices offer the application exactly the semantics and
fine-grained tuning it needs. Multiple example of such
services exist in the literature [23, 24, 25]. This integra-
tion of the application with the storage it needs greatly
eases its containerization and hence application porta-
bility across platforms.

We argue that deploying storage alongside the appli-
cation additionally obviates the need for the aforemen-
tioned features of distributed file systems by removing
the multi-user constraint. Blob-, or Object-based stor-
age [26, 27, 28] has been demonstrated to provide an
alternative to file-based storage on HPC and Big Data
platforms. The reason is twofold. First, the flat names-
pace and simple semantics they provide enables perfor-
mance improvements that are simply inaccessible to dis-
tributed file systems. Second, the data model they pro-
vide is close enough to that of file systems so most ap-
plications could use it with little to no modification.

In this article we leverage application-defined storage
to assess the applicability and benefits of object-based
storage for both HPC and Big Data platforms. Our con-
tributions can be summarized as follows:

• After briefly describing our goals (Section II) and
reviewing related work (Section 2), we propose
blobs as candidates for addressing the storage
needs of HPC and Big Data (Section 3).

• We leverage a representative set of HPC and Big
Data applications to prove that the vast majority of
the I/O calls performed can be covered by cur-
rent state-of-the-art blob storage systems (Sec-
tion 6).

• We describe the modifications necessary in the
storage stack for HPC and Big Data applications
to run atop blob storage (Section 7).

• We use an experimental testbed and a leadership-
class supercomputer (Section 5) to evaluate the
performance benefits and trade-offs running
these applications atop the same blob storage
systems rather than traditional file-based storage
(Section 8). We highlight a completion time im-
provement of up to 25% with blobs.

We finally summarize our results (Section 9) and
briefly conclude with future work (Section 10).

2. Related work and motivation

In this section we start by reviewing the state of the
art regarding relaxing POSIX semantics on both HPC
and Big Data applications, convergence between both
these worlds and application-defined storage for HPC.

2.1. HPC: Relaxing POSIX-IO API and semantics

Increasingly large amounts of data are generated by
HPC applications as the result of simulations and large-
scale experiments. Thus, storage systems need to pro-
vide concurrent access to the data for large numbers of
tasks and processes. Such parallel storage operations
rely on the usage of a parallel file system (PFS) imple-
menting the POSIX-IO interface as the storage layer.
Typical examples of such file systems used on most
HPC platforms are Lustre [29] and OrangeFS [30].

Beyond the POSIX-IO interface lies the POSIX-IO
semantics that a fully compliant file systems must im-
plement. This standard has advantages regarding porta-
bility, but its inflexibility can cause considerable per-
formance degradation [31]. For example, this standard
requires that changes made to a shared file must be vis-
ible immediately by all processes. Because an applica-
tion has no way of telling the file system that POSIX-
IO semantics are unnecessary or unwanted, it cannot
avoid this performance penalty. For many file systems,
these performance issues are noticeable even for small
numbers of client processes and straightforward I/O pat-
terns [32, 33, 34]. The issues also affect higher levels of
the I/O stack because an underlying POSIX-compliant
file system effectively forces POSIX-IO semantics upon
all other layers . For instance, this applies to the com-
mon HPC I/O stack with Lustre [35].

Yet, the actual applications used in HPC usually do
not need such strict semantics. Indeed, most HPC ap-
plications do not talk to the file system directly. They
use intermediate libraries like MPI-IO [36, 37], either
directly or via intermediate libraries such as HDF5 [38,
12] or ADIOS [15, 11]. These libraries often provide
relaxed semantics compared with POSIX. For example,
MPI-IO requires a write to be visible by all processes
only after the file is closed or synced [39]. Therefore,
paying the performance cost of strict semantics at the
storage level when these semantics are not required at
higher levels is unnecessary.

Accordingly, considerable research has focused on
relaxing POSIX-IO semantics. For example, OrangeFS,
itself based on PVFS, relaxes the semantics of paral-
lel writes on shared files to match those of MPI-IO. Vi-
layannur et al. [40] propose a subset of POSIX I/O ex-
tensions for PVFS. This work seeks to further relax the

2



strict rules of POSIX-I/O semantics that limits applica-
tion scalability.

2.2. Big data: from file systems to object storage
Big data applications require a storage model that fol-

lows a write-once, read-many model. This requirement
drove the design of many distributed file systems by
sacrificing some of the POSIX-IO operations in order
to gain data throughput. Google FS (GFS) [41] imple-
ments only a set POSIX-compliant operations needed
by data-intensive applications, namely, create, delete,
open, close, read, and write. HDFS [17] is based
on GFS and is designed to work in commodity hard-
ware. It implements some additional POSIX-IO re-
quirements such as directory operations and file per-
missions, but it discards some others such as concur-
rent reads and writes. Ceph [6] follows the same trend,
discarding some POSIX-IO semantics and implement-
ing only those that allow a distributed file system to
work with most applications. GlusterFS eliminates the
metadata server and claims to be fully POSIX compli-
ant. However, work has shown that this compliance can
impact throughput [42].

Big Data storage systems work together with com-
putation frameworks such as Spark [43] or Flink [44].
These platforms inherit their design from MapRe-
duce [45], which is a programming paradigm targeted at
processing vast amounts of data. It is a part of Hadoop
and relies on HDFS to place the computation where the
data resides. Hence, for these kinds of application, data
locality is a first-class citizen, while POSIX-IO seman-
tics are neither needed nor used [46].

We can clearly see a trend where the file system
POSIX-IO API or semantics such as providing a hierar-
chical namespace, file permissions, or strict file access
parallelism are unnecessary. Thus, they can be traded
for performance and adaptability for big data.

2.3. Storage convergence between HPC and Big Data
During the past decade many research projects and

workshops were dedicated to the opportunities and pos-
sibilities of running large scale scientific applications by
using cloud computing technologies ([47, 48, 49, 50]).
In general, many efforts there were made to investi-
gate and evaluate the performance of HPC applications
(mostly form life sciences [51, 52, 53]) on clouds (with
and without virtualization [54]) highlighting cost effi-
ciency or trade-offs [55]. For example, Gupta et al. [56]
write that low communication-intensive applications are
more suitable for cloud deployments.

Several research efforts focus on building optimized
or customized distributed-computing platforms that

meet the requirements of HPC applications and scien-
tific simulations [57, 58]. Many of those are based on
big data frameworks such as Spark or Hadoop / MapRe-
duce. In contrast, Pan et al. [59] propose to port parallel
file systems to cloud environments in order to support
a wide range of applications expecting POSIX-IO on
cloud applications. However, the application use cases
considered in that work are rarely data-intensive. In the
same way other researchers also aimed to provide the
features of PFS in the cloud storage. For instance, Y.
Abe and G. Gibson in [60] presented a storage model
which gives data access to a user through the storage
service layer (S3 interface) and directly through a PFS.
In parallel, other projects seek to develop from scratch
file systems that can utilize advantages of both HPC and
Cloud storage. Among those is a user mode file system
Saga [61] based on Cloud Storage service.

2.4. Leveraging node-local storage on HPC
The traditional architecture of HPC platforms is a ma-

jor challenge for HPC and Big Data convergence, caus-
ing both stacks to be completely isolated (Figure 1).
Indeed, the lack of local storage on compute nodes
forces users to cope with the strict semantics of a central
file-based storage system typically based on Lustre or
GPFS. Yet, as the platforms are growing at a sustained
pace, local storage progressively finds its way to the
compute nodes, hence completely changing the game.
For example, MareNostrum [21] or Theta [22] offer
SSD-based node-local storage. Upcoming leadership-
class platforms such as Sierra [62], Summit [63] or Au-
rora [64] nodes will all be equipped of high-speed local
disks as well.

Taking advantage of such local disks has been the fo-
cus of various publications in the literature. For exam-
ple, DataWarp [24] proposes to leverage compute nodes
as reconfigurable burst buffers in order to accelerate par-
allel file system I/O. FTI [65] proposes to use this stor-
age in order to store regular application checkpoints,
providing fault-tolerance to MPI applications.

Node-local storage can also be used to expose new
data structures and storage capabilities to the appli-
cation. This is the case of Mochi [25], which uses
a microservices approach to provide transient storage
or communication services based on local non-volatile
memory. DeltaFS [23] proposes a great transient file
system featuring data and metadata indexing with near-
linear scalability. DataSpaces [66] uses node-local
memory to extract live data from a running simulation.
This data is indexed online and made accessible to other
components for example to derive useful, near real-time
metrics about the running application.

3



I/O library

AppApp App

HPC DFS

Big Data Framework

Big Data DFS

AppApp App

I/O library calls

POSIX-like callsPOSIX-like calls

BD Framework calls

Big DataHPC

Figure 1: Current side-to-side storage stack for HPC and Big Data.

All this highly-relevant work paves the way for HPC
and Big Data convergence. Indeed, it enables user to de-
ploy exactly the storage system needed by the applica-
tion directly on the compute nodes, configured in a way
that makes sense to the application. This is strinkingly
similar to cloud computing platforms such as [19, 18],
where users dedicate a subset of the reserved nodes
to deploy one or multiple storage systems. Further-
more, the benefits in terms of application modularity
and portability are of particular interest in the context
of service-oriented, converging architectures.

3. Could blobs be the enabling factor?

Although the set of tools and techniques used for
HPC and big data environment differ, many objectives
are similar. The most important is probably to provide
the highest-possible data access performance and par-
allelism. As such, the storage stack for HPC and big
data looks similar (Figure 1). Indeed, the related work
showed that a common trend for both HPC and big data
is to relax many of the concurrent file access seman-
tics, trading such strong guarantees for increased perfor-
mance. Nevertheless, some differences remain. Specif-
ically, while the big data community increasingly drops
POSIX-IO altogether, the HPC community tends to pro-
vide this relaxed set of semantics behind the same API.
Although this choice increases backwards compatibility
with legacy applications, it also has significant perfor-
mance impact.

Very few HPC applications actually rely on strong
POSIX-IO semantics. For instance, the MPI-IO stan-
dard does not only relaxes many of these semantics but
also drops many of its operations altogether. For exam-
ple, it does not expose the file hierarchy or permissions
to the end user. Therefore, applications leveraging these
libraries do not need these features to be provided.

I/O library

AppApp App

HPC Adapter

DFS

Big Data Framework

Big Data Adapter

HDFS

AppApp App

I/O library calls

POSIX-like callsPOSIX-like calls

BD Framework calls

Blob calls Blob calls

Big DataHPC

Converged Blob Storage

Figure 2: Converged side-to-side storage stack for HPC and Big Data.

Consequently, we ask ourselves whether the un-
derlying storage technologies from both worlds could
be unified, leading to specific software stacks and li-
braries running atop a low-level, low-opinionated stor-
age paradigm, such as the one provided by blob storage
systems (Figure 2). Indeed, blob-based storage systems
such as Týr [28] or RADOS [26] could provide a strong
alternative to file-based storage on both sides. These
systems typically have a much more limited set of prim-
itive compared with file systems:

• Blob Access: object read, object size,

• Blob Manipulation: object write, truncate,

• Blob Administration: create object, delete object,

• Namespace Access: scan all objects.

These operations are similar to those permitted by the
POSIX-IO API on a single file. Therefore, most file
operations performed on a file system can be mapped
directly to the corresponding primitives of blob storage
systems. In that model we classify file open and unlink
as file operations.

In contrast, directory-level operations do not have
their blob counterpart, because of the flat nature of the
blob namespace. Should applications need them, such
operations can be emulated using the scan operation.
Obviously, this emulation is far from optimized. Yet,
since we expect these calls to be vastly outnumbered by
blob-level operations, this performance drop is likely to
be compensated by the gains permitted by using a flat
namespace and simpler semantics.

4



Table 1: Application summary
Platform Application Usage Total reads Total writes R / W ratio Profile

mpiBLAST (BLAST) Protein docking 27.7 GB 12.8 MB 2.1 × 103 Read-intensive
MOM Oceanic model 19.5 GB 3.2 GB 6.01 Read-intensive
ECOHAM (EH) Sediment propagation 0.4 GB 9.7 GB 4.2 × 10−2 Write-intensiveHPC / MPI

Ray Tracing (RT) Video processing 67.4 GB 71.2 GB 0.94 Balanced

Sort Text Processing 5.8 GB 5.8 GB 1.00 Balanced
Connected Component (CC) Graph Processing 13.1 GB 71.2 MB 0.18 Read-intensive
Grep Text Processing 55.8 GB 863.8 MB 64.52 Read-intensive
Decision Tree (DT) Machine Learning 59.1 GB 4.7 GB 12.58 Read-intensive

Cloud / Spark

Tokenizer Text Processing 55.8 GB 235.7 GB 0.24 Write-intensive

Legacy application, which could rely on a fully com-
pliant POSIX-IO interface, could leverage a POSIX-IO
interface implemented atop such blob storage. This is
proven possible by the Ceph file system, a file-system
interface to RADOS.

4. A representative set of applications

The challenges posed by convergence between HPC
and Big Data applications have raised many discussions
in the community [47]. One of the emerging ideas from
these discussions is that the applications cannot be con-
sidered separately from the underlying software stack;
the fuel for convergence could enable a wide variety
of HPC and Big Data applications to leverage converg-
ing services and underlying infrastructure. Although
designing a full converging stack is not the objective
of this paper, we focus on storage as one of the criti-
cal milestones that could make such convergence possi-
ble. Specifically, we choose I/O-intensive applications,
which could benefit most from such converged storage.

Accordingly, we base our experiments on a number
of I/O-intensive applications extracted from the litera-
ture [67, 68] that cover the diversity of I/O workloads
commonly encountered on both HPC (Section 4.1) and
Big Data platforms (Section 4.2).

4.1. HPC Applications
The HPC applications we use are based on MPI. They

all leverage either large input of output datasets as-
sociated with large-scale computation atop centralized
storage usually provided by a distributed, POSIX-IO-
compliant file system such as Lustre [29].

mpiBLAST [69] is a parallel MPI implementation
of NCBI BLAST [70]. It is a read-intensive
biomolecular tool targeted at searching for regions
of similarity between biological sequences. The
program compares nucleotide or protein sequences
to sequence databases and calculates the statistical
significance.

MOM (Modular Ocean Model) [71] is a read-intensive
three-dimensional ocean circulation model tar-
geted at understanding the ocean climate system.
It is developed at the NOAA’s Geophysical Fluid
Dynamics Laboratory.

ECOHAM5 (ECOlogical model, HAMburg, ver-
sion 5) [72] is a write-intensive three-dimensional
biogeochemical ecosystem model with the focus
on the North Sea [73, 74]. It modelizes the pelagic
and benthic cycles of carbon, nitrogen, phospho-
rus, silicon and oxygen on the northwest European
continental shelf. It was developed at the Hamburg
Institute of Oceanography.

Ray Tracing is a balanced read-write workload ex-
tracted from the BigDataBench [68], itself derived
from [75]. It uses scene description files to gener-
ates images by tracing the path of light and simu-
lating the effects of its encounters with virtual ob-
jects.

4.2. Big Data Applications

As the leading open-source Big Data processing and
analytics framework, Apache Spark [43] appears as an
ideal candidate for this research. Chosen applications
are extracted from SparkBench [76], a benchmarking
suite for Spark. It comprises a representative set of
workloads belonging to four application types: machine
learning, graph processing, streaming, and SQL queries.

Sort is a widely used benchmark that reads input data
and sorts it based on a given key. It is I/O-intensive
since all the data read will be processed and written
back to the file system. For example, it can be used
to sort a series of readings from sensors by date.

Grep is a filtering workload that searches in the input
data for lines containing a given word and saves
these lines into HDFS. In contrast to Sort, the size
of the input and output will not be equal, and some

5



data will be filtered out. It can be used to extract
all the documents that contain a word of interest in
a huge corpus.

Decision Tree is a machine learning workload that
reads a dataset containing rows with a series of fea-
tures and a class they belong to. This dataset is then
split into a training and a test set. The workload
creates a predictive model with the training set that
is able to predict the class of the elements in the
test set. These predictions are written back to disk.
An example could be classifying data packets into
malicious or nonmalicious activity.

Connected Component is an algorithm that finds the
subgraphs in a graph in which any two vertices are
connected by a path but are not connected to any
other node on the supergraph. This can be seen as
a way of finding clusters of nodes. For example,
in a social network it can be used to find commu-
nities of users. The implementation in the bench-
mark will read a dataset and write the labels of each
component back to disk.

Tokenizer is a Spark application we developed that
reads a text file, tokenizes each line into words,
and calculates the NGrams=2 for each line. These
Ngrams are saved in a text file. This is a com-
mon preprocessing step in topic modeling for doc-
uments where word patterns have to be extracted
as an input to a machine learning model. This ap-
plication shows a write-intensive workload.

5. Experimental configuration

We run experiments using the Grid’5000 [77] experi-
mental testbed, which spans 11 sites in France and Lux-
embourg. In this paper the parapluie cluster of Rennes
was used. Each node embeds 2 x 12-core 1.7 Ghz 6164
HE, 48 GB of RAM, and 250 GB HDD. Network con-
nectivity is supported either with Gigabit Ethernet con-
nectivity (MTU = 1500 B) or by 4 x 20G DDR Infini-
Band. We use the former for Big Data and the latter for
HPC applications.

HPC applications ran atop Lustre 2.9.0 and MPICH
3.2 [78], on a 32-node cluster that we configure with
multiple ratios of storage-to-compute nodes. Network-
ing is provided on each node with 4 x 20G DDR In-
finiBand. Big Data application ran atop Spark 2.1.0,
Hadoop / HDFS 2.7.3 and Ceph Kraken using Gigabit
Ethernet connectivity. The cluster is composed of the
same 32 nodes.

All storage systems are configured with similar pa-
rameters to allow for a fair comparison. Specifically,
each system is configured with a replication factor of 1
(no replication), and using a stripe size of 64 MB.

In addition, we prove that the results obtained with
HPC applications are replicable to a high-end super-
computer. To do so, we performed extra experiments
on the Theta supercomputer [22] hosted at the Argonne
Leadership Computing Facility (ALCF). Theta is a last-
generation 9.65-petaflop Cray XC40 system. It is com-
posed of 3,624 nodes, each containing a 64 core In-
tel Knights Landing processor with 16 GB of high-
bandwidth in-package memory (MCDRAM), an addi-
tional 192 GB of DDR4 RAM, and a 128 GB local SSD.

6. Analyzing the distribution of storage calls

In this section we demonstrate that the actual I/O calls
made by both HPC and big data applications are not in-
compatible with the set of features provided by state-
of-the-art blob storage systems. Our intuition is that
read and write calls are vastly predominant in the work-
loads of those applications and that other features of dis-
tributed file systems such as directory listings are rarely
used, if at all.

6.1. Tracing HPC applications

Figure 3 summarizes the relative count of storage
calls performed by our set of HPC applications. The
most important observation for all four applications is
the predominance of reads and writes. Except for ECO-
HAM, no application performed any other call to the
storage system that reads or writes files, thus confirm-
ing our first intuition. This was expected because the
MPI-IO standard does not permit any other operation.

The few storage calls other than read and write
(mainly extended attributes reads and directory listings)
are due to the run script necessary to prepare the run
and collect results after it finishes. These steps can be
performed offline from the I/O-heavy MPI part of the
application. This results in only reads and writes being
performed (EH / MPI).

We conclude that the only operations performed by
our set of HPC applications, namely, file I/O, can be
mapped to blob I/O on a blob storage system. Conse-
quently, these applications appear to be suited to run
unmodified atop blob storage.

6.2. Tracing Big Data applications

Figure 4 shows the relative count of storage calls per-
formed by our set of big data applications to HDFS.

6



BLAST MOM EH EH / MPI RT

0

20

40

60

80

100

Application

St
or

ag
e

ca
ll

ra
tio

(%
)

File read File write Directory operations Other

Figure 3: Measured relative amount of different storage calls to the
persistent file system for HPC applications

Sort Grep DT CC Tokenizer

0

20

40

60

80

100

Application

St
or

ag
e

ca
ll

ra
tio

(%
)

Read Write Directory operations Other

Figure 4: Measured relative amount of different storage calls to the
persistent file system for Big Data applications

Table 2: Spark directory operation breakdown
Operation Action Count
mkdir Create directory 43
rmdir Remove directory 43

opendir (Input data
directory)

Open / List
directory 5

opendir (Other directories) Open / List
directory 0

Similar to what we observed with HPC applications, the
storage calls are vastly dominated by reads and writes
to files. In contrast with HPC, however, all applications
also cause Spark to perform a handful of directory op-
erations (86 in total across all our applications). These
directory operations are not related to the data process-
ing because input / output files are accessed directly by
using read and write calls.

Analyzing these directory operations, we notice that
they are related solely to (a) creating the directories nec-
essary to maintain the logs of the application execution,
(b) listing the input files before each application runs if
the input data is set as a directory, and (c) maintaining
the .sparkStaging directory. This directory is inter-
nally used by Spark to share information related to the
application between nodes and is filled during the appli-
cation submission. It contains application files such as
the Spark jar or the application jar, as well as distributed
cache files [79].

We analyze in detail the directory operations per-
formed by big data applications. Table 2 shows the
breakdown of all such directory operations across all

applications by storage call. We note that only the input
data directories are listed, meaning that Spark accesses
directly all the other files it needs with their path. Con-
sequently, a flat namespace such as the one provided by
blob storage systems could probably be used.

7. Big Data: Hierarchical to flat namespace

We previously observed that Spark storage calls in-
cluded several very rare directory operations. Our ob-
servations concluded that such calls are only performed
for separating data files from temporary files and are not
strictly necessary for the application itself. Yet, one of
our objectives is to prove that Spark applications can
run unmodified atop blob storage. We seek to prove
that Spark can run atop a flat namespace providing only
object-level operations, as provided by blob storage sys-
tems; such a proof would confirm our previous asser-
tions.

Since file operations dominate directory operations,
we choose to optimize the former at the expense of the
latter. Thus, for any given hierarchical file path we gen-
erate a predictable flat path. Subsequent operations to
that path are translated to a file operation on the rewrit-
ten path. In HDFS we achieve this by storing all files
at the root. That is, we store on path /foo bar a file
that would normally be stored on /foo/bar in a hier-
archical namespace. Listing or deleting a directory is
implemented by scanning and filtering the whole set of
files in the system, selecting only the matching files that
would be contained in that folder. Although such scan

7



Sort Grep DT CC Tokenizer
0

100

200

300

400

500

600

700

800

Application

A
vg

.t
as

k
co

m
pl

et
io

n
(s

)

Hierarchical namespace Flat namespace

Figure 5: Average Big Data task completion time with and without flat
namespace simulation, with 95% confidence intervals.

read write opendir rmdir
0

50

100

150

Operation

A
vg

.o
pe

ra
tio

n
co

m
pl

et
io

n
(m

s)

Hierarchical namespace Flat namespace

Figure 6: Average individual Big Data operation completion time with
and without flat namespace simulation, with 95% confidence intervals.

operations are costly, they are infrequent. Consequently
the performance gains by flattening the file system (i.e.,
not managing permissions) should outweigh the cost of
such operations. Table 3 summarizes the rewrite rules
we apply on incoming storage calls from Spark.

We intercept and rewrite storage calls by modifying
Hadoop / HDFS file storage interface. We run all Big
Data applications 100 times and compare the average
completion time of each benchmark suite on HDFS us-
ing the original hierarchical namespace or simulating a
flat namespace. We plot the results in Figure 5. Flat-
tening the namespace on HDFS does not result in any
significant task completion time variation despite the
higher completion time of directory operations, plotted
in Figure 6. Indeed, these calls are diluted in the vastly
superior amount of file read and write calls.

We demonstrated that running our set of Big Data ap-
plications over a simulated flat namespace not only is
possible but also does not cause any significant perfor-
mance variation. Consequently, these applications also
appear to be suited to run atop a blob storage system,
thus further enhancing the performance of the applica-
tion by leveraging the reduced complexity of managing
a flat namespace.

8. Replacing file-based by blob-based storage

In this section we demonstrate the potential of blob-
based storage to suit the storage needs of both HPC and
Big Data applications. To do so, we deploy each appli-
cation listed in Section 4 atop state-of-the-art blob stor-

Table 3: Big Data storage call translation rules
Original operation Rewritten operation
create(/foo/bar) create(/foo bar)

open(/foo/bar) open(/foo bar)

read(fd ) read(bd )

write(fd ) write(bd )

mkdir(/foo) Dropped operation

opendir(/foo)
scan(/), return all files matching

/foo *

rmdir(/foo)
scan(/), remove all files matching

/foo *

age systems. We detail these systems in Section 8.1. We
prove that the performance of these applications run-
ning atop converged blob-based storage matches or ex-
ceeds that of the same applications running atop Lustre
for HPC (Section 8.2) and HDFS for Big Data (Sec-
tion 8.4).

8.1. Overview of the blob storage systems
We run our applications atop two state-of-the-art blob

storage systems: Týr [28] and RADOS [26]. We are us-
ing only the basic blob storage functionality they pro-
vide, and do not make use of any advanced features
they may support. Although their high-level design has
similarities, these two systems have different strengths
and weaknesses resulting from design decisions made
for each to support specific use cases.

Týr is a large-scale blob storage system designed
around the same design principles as the Dynamo
key-value database [80]. It is targeted at high

8



28 / 4 24 / 8 20 / 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Compute nodes / Storage nodes

A
vg

.t
hr

ou
gh

pu
t(

G
B

/
s)

Lustre Týr RADOS

Figure 7: Average agreggate throughput across all HPC applications
varying the compute-to-storage ratio, with 95% confidence intervals.

BLAST MOM EH / MPI RT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Application

A
vg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

Lustre Týr RADOS

Figure 8: Comparison of read throughput for each HPC application
with Lustre, Týr and RADOS, with 95% confidence intervals.

access parallelism using multiversion concurrency
control (MVCC) associated with built-in multiob-
ject transactions. Týr offers fine-grained random
write access to data, as well as single-hop reads
(i.e., accessing the storage server without prior
communication with any metadata server).

RADOS is the storage layer for Ceph FS [6]. RADOS
has the ability to scale to thousands of hardware
devices by using management software that runs
on each of the individual storage nodes. The soft-
ware provides features such as thin provisioning,
snapshots and replication.

We assess the performance impact of replacing file-
based with blob-based storage by observing three met-
rics. The job completion time is the total execution
time of the application, from submission to completion.
Read bandwidth and write bandwidth respectively rep-
resent the average data transferred per unit of time for
read and write requests. We collect all these metrics on
the compute nodes by instrumenting the adapter, and we
aggregate the results.

8.2. Replacing Lustre with blob-based storage on HPC
In this section, we demonstrate how blob-based stor-

age system can be used to transparently support HPC
applications while matching or exceeding Lustre I/O
performance by replacing the latter with both Týr and
RADOS.

Týr and RADOS are initially developed for Big Data
analytics. To provide the TCP/IP connectivity, we run

Table 4: TCP/IP performance measurements
Metric IPoIB GigE

Ping 25.3 µs 122.3 µs
Jitter 1.9 µs 53.3 µs

Bandwidth 741 MB/s 104 MB/s

preliminary tests on the systems to choose between IP
over InfiniBand (IPoIB) or Gigabit Ethernet as available
on the Grid’5000 testbed. We run a simple latency and
bandwidth benchmark using iperf. The results, de-
picted in Table 4, show a clear performance advantage
of IPoIB over Gigabit Ethernet with our setup. There-
fore, we configure both systems to use IPoIB connectiv-
ity for the remainder of this paper.

We experiment using three storage-to-compute node
configurations in order to ensure that our results are in-
dependent of the cluster configuration. We run the same
experiments respectively with 28 compute / 4 storage
nodes, 24 / 8 and 20 / 12. We average the results of 100
experiment runs.

On each node, we deploy a small interceptor to redi-
rect POSIX storage calls to the blob storage system.
It is based on FUSE [81], which is supported on most
Linux kernels today. In that configuration, this inter-
ceptor acts as the HPC adapter as presented in Figure 2.
This adapter translates file operations to blob operations
according to Table 5. Directory operations are not sup-
ported as we showed previously that they are unneces-
sary for HPC applications. The APIs of the blob stor-
age systems we consider allow for a direct mapping be-

9



BLAST MOM EH / MPI RT
0

0.2

0.4

0.6

0.8

1

1.2

Application

A
vg

.w
ri

te
th

ro
ug

hp
ut

(G
B

/
s)

Lustre Týr RADOS

Figure 9: Comparison of write throughput for each HPC application
with Lustre, Týr, and RADOS, with 95% confidence.

BLAST MOM EH / MPI RT
0

20

40

60

80

100

120

Application

A
vg

.r
el

.c
om

pl
et

io
n

tim
e

(%
)

Lustre Týr RADOS

Figure 10: Average performance improvement relative to Lustre for
HPC applications using blob-based storage, with 95% confidence.

Table 5: HPC storage call translation rules
POSIX Call Translated Call

create(/foo/bar) create(/foo bar)

open(/foo/bar) open(/foo bar)

read(fd ) read(bd )

write(fd ) write(bd )

mkdir(/foo) Unsupported operation
opendir(/foo) Unsupported operation
rmdir(/foo) Unsupported operation

tween file-based and blob-based storage operations. We
partially implement the stat function. Specifically, the
file size is mapped to the blob size, the permissions are
set to 777, the block size and allocated block size are
set to 512 bytes, and the inode number is set to the hash
of the blob key. The remaining information is set to 0.
Our implementation does not support symbolic or hard
links, which are not needed by our applications.

In Figure 7 we plot the average aggregate read and
write bandwidth for all applications while varying the
compute-to-storage node ratio. We note that for our
configuration the 24 compute node / 8 storage node
setup results in the higher bandwidth for all storage sys-
tems. Hence, the following experiments are performed
with that configuration. This ratio is much lower than on
common HPC platforms (3:1 vs. ∼ 70:1 at ORNL, for
instance [82]) mainly because the jobs we run are sig-
nificantly more data-intensive than compute-intensive.
We note from these results that blob storage systems
constantly outperform Lustre in all configurations for
both reads and writes. We will detail these results in

the following experiments. For read-intensive applica-
tions such as BLAST and MOM, this performance in-
crease allows blob storage systems with 4 storage nodes
to achieve a bandwidth comparable to Lustre’s with 8
storage nodes.

In Figure 8 we plot the average read bandwidth for
each of our HPC applications with Lustre file-based
storage and Týr or RADOS blob-based storage. We note
an average 14% reduction of the total read time when
using blob-based storage compared to Lustre. This is
because of the optimized write path of the two blob stor-
age systems considered. Indeed, both enable clients to
locate and access any piece of data directly without prior
communication with any dedicated metadata node. Al-
though both blob storage systems behave similarly with
respect to read performance, RADOS shows a slightly
higher read performance due to its lower read consis-
tency.

We plot in Figure 9 the average write bandwidth ob-
tained in similar conditions. Although these results
show that blob storage systems still outperform Lustre
in all cases, the performance gain is lower, at 6% on
average. We observe that Týr outperforms RADOS in
write performance for Ray Tracing, in contrast to the
trend we observe with other applications. This is be-
cause Ray Tracing is more write-intensive than the other
examples, and Týr’s MVCC-based architecture excels
for workloads with a high volume of concurrent write
operations. Under low write concurrency however, this
architecture generates a slight overhead that benefits
RADOS.

10



BLAST MOM EH / MPI RT
0

20

40

60

80

100

120

Application

A
vg

.r
el

.c
om

pl
et

io
n

tim
e

(%
)

Lustre Týr RADOS

Figure 11: Average performance improvement relative to Lustre for
HPC applications using blob storage, with 95% confidence on Theta

In Figure 10 we plot the average application comple-
tion time improvement. The I/O performance gains are
here diluted in compute operations. As expected con-
sidering the previous results, read-intensive applications
exhibit the greatest decrease. BLAST and MOM show a
completion time reduction of nearly 8% with both blob
storage systems. In contrast, write-intensive applica-
tions such as ray tracing show a lower 3% completion
time decrease with Týr or RADOS as the underlying
storage when compared with Lustre.

8.3. Replicating results on a high-end supercomputer

In this section, we seek to prove that the experiments
obtained in Section 8.2 are reproducible on a high-end
supercomputer. To do so, we leverage the Theta super-
computer hosted at Argonne National Laboratory, and
run the same experiments as in the aforementioned sec-
tion. Although arguably not an easy task due to the
strong limitations of the platform and the lack of supe-
ruser rights, blob storage systems such as Týr and RA-
DOS are deployable on such platform.

We deploy the applications as described in the previ-
ous section, using 32 nodes (totaling 2048 cores), using
24 nodes for computation and 8 nodes for storage, and
measure the completion time for each application. Ex-
periments with Lustre were using the file system avail-
able to the computer, totaling 170 storage nodes and
shared across all users.

We plot the results in Figure 11. We show the per-
formance improvement to be significantly higher than
on our testbed. The reason for this significant perfor-
mance increase is to be found in the technical charac-
teristics of Theta, which offers significantly more RAM

24 / 8 48 / 16 72 / 24 96 / 32
0

20

40

60

80

100

120

140

Computation / Storage nodes

A
gg

.r
el

.c
om

pl
et

io
n

tim
e

(%
)

BLAST MOM
EH / MPI RT

Figure 12: Average performance improvement at scale relative to 32
nodes setup for HPC applications using blob-based storage on Theta.

than SSD space. As such, for the most part, the storage
systems deployed on these nodes behave as in-memory
storage systems. We acknowledge that the setup of this
platform is particular in this regard and by consequence
that the results are not representative of those of another
platform with different setup. Yet, we advocate that
the results reach the goal of demonstrating that deploy-
ing blob storage systems on high-end HPC platforms is
possible without requiring any application modification.
We observe a higher variance in the results compared to
Grid’5000, which we attribute to the shared nature of
the centralized storage.

In Figure 12 we scale all four applications on up to
128 nodes of Theta, or 8192 cores. Because of alloca-
tion limitations, each experiment was performed only
5 times. We notice a near-linear decrease of computa-
tion time as the size of the cluster increases. With ap-
plications applications such as ECOHAM or Ray Trac-
ing, the performance improvement is slightly lower than
with purely read-intensive applications due to the signif-
icantly higher cost of write operations compared to read
operations.

8.4. Running Spark applications atop blob storage
In this section we run the same set of experiments for

the set of Big Data applications. We demonstrate that
Týr and RADOS significantly outperform HDFS for all
applications. In order to provide an additional baseline
of the performance of file systems, we also run these
applications atop CephFS [6], itself based on RADOS.

We use the same configuration as in Section 7, run-
ning computation alongside storage on 32 nodes. We
integrate the storage adapter for blob storage directly

11



Sort Grep DT CC Tokenizer
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Application

A
vg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

HDFS Týr RADOS CephFS

Figure 13: Comparison of read throughput for each Big Data appli-
cation with HDFS, Týr, RADOS and CephFS, with 95% confidence
intervals.

Sort Grep DT CC Tokenizer
0

0.2

0.4

0.6

0.8

1

1.2

Application

A
vg

.w
ri

te
th

ro
ug

hp
ut

(G
B

/
s)

HDFS Týr RADOS
Ceph

Figure 14: Comparison of write throughput for each Big Data appli-
cation with HDFS, Týr, RADOS and CephFS, with 95% confidence
intervals.

Sort Grep DT CC Tokenizer
0

20

40

60

80

100

120

Application

A
vg

.r
el

.c
om

pl
et

io
n

tim
e

(%
)

HDFS Týr RADOS
Ceph

Figure 15: Average performance improvement relative to HDFS for
Big Data applications using blob-based storage, with 95% confidence
intervals.

inside HDFS. The Hadoop installation has been mod-
ified to redirect storage calls to blob storage systems.
The translation between POSIX-like calls and flat-
namespace blob operations is done by using the transla-
tion rules defined in Table 3. We implement the CRUSH
algorithm to provide Spark with the physical data lo-
cation on RADOS and CephFS. We use the client API
capabilities to provide that information with Týr.

In Figure 13 we plot the average read bandwidth

achieved for each of the Spark benchmarks. We no-
tice a striking read bandwidth improvement when us-
ing Týr and RADOS over HDFS (the read bandwidth
is increased by 28% and 32% respectively). Same as
in HPC, this is due mainly to the direct read feature of
the two storage systems that, unlike HDFS, enable the
applications to bypass any centralized metadata service
and access the storage servers directly. CephFS perfor-
mance highlights the cost of file-based storage by show-
ing a degraded performance compared to RADOS. As
with HDFS, this is mostly due to the additional commu-
nication required with dedicated metadata servers in the
critical path for read requests, made necessary by the
file hierarchy management.

Figure 14 shows the average write bandwidth for
these applications. Similar to what was observed with
HPC, we note a constant write bandwidth improvement
with blob storage over HDFS and CephFS. We also
note the same pattern we observed with HPC. Specif-
ically, RADOS outperforms Týr on read-intensive ap-
plications, whereas Týr enables higher throughput on
write-intensive applications. This is visible with the To-
kenizer application, where lock contention due to lack
of multiversion concurrency control in RADOS causes
significant performance loss on concurrent write access.

In Figure 15 we plot the relative improvement in the
total application completion time, diluted in computa-
tion. Running Big Data applications atop blobs im-
proves application cpmpletion time, up to 22% com-
pared to HDFS and 7% compared to CephFS. For Big

12



Data, the highest gains are obtained with read-intensive
applications such as Grep and Decision Tree. In com-
parison, write-intensive applications such as Tokenizer
also benefit from improved performance, although rela-
tively smaller due to the globally greater complexity of
the write protocols for each storage system.

8.5. Adapter layer influence

We evaluate the influence of the storage adapter with
both HPC and Big Data platforms to ensure that it does
not jeopardize the results or unfavorably impact any of
the experimented systems. Specifically, we run the ap-
plications presented in Section 4 with and without the
storage adapter, and we measure the completion time in
all cases.

The results indicate an average performance reduc-
tion of 0.34% when using the adapter, within the mea-
surement margin of error. Thus, we advocate that the
adapter does not impact the validity of our conclusions.

9. Takeaways

Takeaway 1: File-based storage can be transparently
replaced by blob-based storage, improving application
I/O performance.

A direct consequence of that observation is that we
can replace file-based with blob-based storage for both
HPC and Big Data applications. We demonstrate this in
Section 8 by modifying the storage adapter to redirect
the calls to a blob storage system. This change allows
applications to run unmodified atop the flat namespace
provided by blob storage.

The results obtained on HPC replacing Lustre with
blob-based storage confirm that, despite the aggressive
optimization of Lustre to HPC-oriented workloads, the
adoption of a simpler storage paradigm such as blobs
enables application performance gains. These gains
are especially important for read-intensive applications
which benefit most the reduced overhead of blob stor-
age systems compared with traditional file-based stor-
age. Specifically, in many cases the strict POSIX-IO se-
mantics of Lustre cause multiple servers to be involved
in a simple operation. In contrast, both RADOS and Týr
allow reads to be processed directly by the server hold-
ing the data, without any intermediary in most cases.

We note strikingly similar results with Big Data
workloads. They allow us to highlight the clear perfor-
mance gains possible by replacing HDFS with simpler,
aggressively optimized solutions providing only a flat
namespace that is sufficient for many applications.

We also factually prove on Theta that the results ob-
tained on our testbench are easily replicable to a high-
end supercomputing platform, confirming that our ini-
tial setup is reasonable.

Takeaway 2: Blob-based storage convergence between
HPC and Big Data is possible.

Providing a high-level storage paradigm able to fit the
needs of both worlds is complicated because of the vast
variety of tools available on HPC and Big Data plat-
forms. However, we notice that transitioning to a low-
level storage abstraction eases the convergence between
both stacks. We could easily map MPI-IO primitives to
blob storage systems. Likewise, the I/O profile of Spark
applications is mostly compatible with blob, such that a
simple adapter can fill the gap.

10. Conclusion

As the data size used by both HPC and Big Data ap-
plication increases, new challenges regarding managing
the amount of data generated by data-intensive appli-
cations arise. The solutions widely adopted for both
worlds tend to diverge because of different sets of tools
and techniques being available on each platforms. Typ-
ically, the HPC community tends to favor relaxing the
POSIX-IO guarantees while retaining the POSIX-IO in-
terface to maintain support for legacy applications. In
contrast, the Big Data community generally drops all or
part of the POSIX-IO interface altogether, in order to
further increase performance. Yet, in both worlds, the
storage systems used for processing large sets of data
still largely rely on file-based interfaces. This situation
implies maintaining complex file hierarchies or permis-
sions, which have a clear impact on the performance of
storage operations.

In this paper we argue that blob storage is a strong
candidate for replacing traditional storage for both HPC
and Big Data. Its simple data model is enough to map
directly file operations to blob operations. Based on the
previous observation that simple file reads and writes
constitute the vast majority of the storage calls made by
both HPC and Big Data applications, we factually prove
that this convergence is possible by mapping both HPC
and Big Data applications to blob storage. This does
not require any modification in the application thanks
to a thin adapter layer between the application and the
persistent storage. We leverage 4 real-life HPC appli-
cations as well as 5 Big Data benchmarks to prove on
an experimental testbed that not only such convergence
is possible, but that it also significantly improve perfor-
mance by up to 25% with read-intensive applications.

13



We confirm on the Theta supercomputer that this setup
is reasonable and applicable to a high-end supercom-
puter with near-linear scalability up to 8,192 cores.

In future work we will experiment both Týr and RA-
DOS at the same time on a real supercomputer as well as
on one of the leading cloud computing platforms, both
with a larger set of applications and frameworks. We
will compare our approach with an extensive set of com-
petitor storage systems and platform configurations.

Acknowledgments

This work is part of the “BigStorage: Storage-
based Convergence between HPC and Cloud to handle
Big Data” project, H2020-MSCA-ITN-2014-642963,
funded by the European Commission within the Marie
Skłodowska-Curie Actions framework. This work was
supported by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research
under Contract DE-AC02-06CH11357. It is also sup-
ported by the ANR OverFlow project, ANR-15-CE25-
0003. Experiments presented in this paper were carried
out using the Grid’5000 testbed, supported by a scien-
tific interest group hosted by Inria and including CNRS,
RENATER, and several universities and organizations.

References

[1] Apache Cassandra, https://cassandra.apache.org/

(2017).
[2] Project Voldemort, http://www.project-voldemort.com/

voldemort/ (2017).
[3] R. Escriva, B. Wong, E. G. Sirer, Hyperdex: A distributed,

searchable key-value store, in: Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, SIG-
COMM ’12, ACM, New York, NY, USA, 2012, pp. 25–36.
doi:10.1145/2342356.2342360.

[4] Project Voldemort, http://www.aerospike.com/ (2017).
[5] Openstack Swift, https://docs.openstack.org/swift/

latest/ (2017).
[6] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,

C. Maltzahn, Ceph: A scalable, high-performance distributed
file system, in: Proceedings of the 7th Symposium on Operat-
ing Systems Design and Implementation, OSDI ’06, USENIX
Association, Berkeley, CA, USA, 2006, pp. 307–320.

[7] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross,
G. Grider, A. Crume, C. Maltzahn, On the role of burst buffers
in leadership-class storage systems, in: IEEE 28th Symposium
on Mass Storage Systems and Technologies, MSST 2012, April
16-20, 2012, Asilomar Conference Grounds, Pacific Grove, CA,
USA, 2012, pp. 1–11. doi:10.1109/MSST.2012.6232369.
URL https://doi.org/10.1109/MSST.2012.6232369

[8] M. Romanus, R. B. Ross, M. Parashar, Challenges and consider-
ations for utilizing burst buffers in high-performance computing,
CoRR abs/1509.05492.
URL http://arxiv.org/abs/1509.05492

[9] J. Han, D. Koo, G. K. Lockwood, J. Lee, H. Eom, S. Hwang,
Accelerating a burst buffer via user-level I/O isolation, in: 2017
IEEE International Conference on Cluster Computing, CLUS-
TER 2017, Honolulu, HI, USA, September 5-8, 2017, 2017, pp.
245–255. doi:10.1109/CLUSTER.2017.60.
URL https://doi.org/10.1109/CLUSTER.2017.60

[10] O. Yildiz, A. C. Zhou, S. Ibrahim, Eley: On the effectiveness of
burst buffers for big data processing in HPC systems, in: 2017
IEEE International Conference on Cluster Computing, CLUS-
TER 2017, Honolulu, HI, USA, September 5-8, 2017, 2017, pp.
87–91. doi:10.1109/CLUSTER.2017.73.
URL https://doi.org/10.1109/CLUSTER.2017.73

[11] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. F. Lofstead, R. Oldfield, M. Parashar,
N. F. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu,
W. Yu, Hello ADIOS: the challenges and lessons of develop-
ing leadership class I/O frameworks, Concurrency and Com-
putation: Practice and Experience 26 (7) (2014) 1453–1473.
doi:10.1002/cpe.3125.

[12] C. Bartz, K. Chasapis, M. Kuhn, P. Nerge, T. Ludwig, A best
practice analysis of HDF5 and NetCDF-4 using lustre, in: J. M.
Kunkel, T. Ludwig (Eds.), High Performance Computing, no.
9137 in Lecture Notes in Computer Science, Springer Interna-
tional Publishing, Switzerland, 2015, pp. 274–281.

[13] M. Kuhn, J. M. Kunkel, T. Ludwig, Dynamically Adaptable I/O
Semantics for High Performance Computing, in: High Perfor-
mance Computing, no. 9137 in Lecture Notes in Computer Sci-
ence, Springer International Publishing, Switzerland, 2015, pp.
240–256. doi:http://dx.doi.org/10.1007/978-3-319-20119-1 18.

[14] M. P. Forum, Mpi: A message-passing interface standard, Tech.
rep., Knoxville, TN, USA (1994).

[15] The adaptable io system (ADIOS), https://www.olcf.

ornl.gov/center-projects/adios/ (2017).
[16] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,

A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin,
A. Ghodsi, J. Gonzalez, S. Shenker, I. Stoica, Apache spark: A
unified engine for big data processing, Commun. ACM 59 (11)
(2016) 56–65. doi:10.1145/2934664.

[17] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop
distributed file system, in: 2010 IEEE 26th symposium on Mass
Storage Systems and Technologies (MSST), IEEE, 2010, pp. 1–
10.

[18] Microsoft Azure, https://azure.microsoft.com/en-us/
(2017).

[19] Amazon Web Services, https://aws.amazon.com/ (2017).
[20] Openstack, https://www.openstack.org/ (2017).
[21] MareNostrum, https://www.bsc.es/marenostrum/

marenostrum (2017).
[22] Theta, https://www.alcf.anl.gov/theta (2017).
[23] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, G. Grider,

Deltafs: Exascale file systems scale better without dedicated
servers, in: Proceedings of the 10th Parallel Data Storage Work-
shop, PDSW ’15, ACM, New York, NY, USA, 2015, pp. 1–6.
doi:10.1145/2834976.2834984.

[24] Cray Datawarp, https://www.cray.com/datawarp (2017).
[25] P. Carns, J. Jenkins, C. D. Cranor, S. Atchley, S. Seo, S. Snyder,

R. B. Ross, Enabling NVM for data-intensive scientific services,
in: 4th Workshop on Interactions of NVM/Flash with Operating
Systems and Workloads (INFLOW 16), USENIX Association,
GA, 2016.
URL https://www.usenix.org/conference/inflow16/

workshop-program/presentation/carns

[26] S. A. Weil, A. W. Leung, S. A. Brandt, C. Maltzahn, Rados: A
scalable, reliable storage service for petabyte-scale storage clus-
ters, in: Proceedings of the 2nd international workshop on petas-

14



cale data storage: held in conjunction with Supercomputing’07,
ACM, 2007, pp. 35–44.

[27] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, A. Carpen-Amarie,
Blobseer: Next-generation data management for large scale in-
frastructures, J. Parallel Distrib. Comput. 71 (2) (2011) 169–
184. doi:10.1016/j.jpdc.2010.08.004.

[28] P. Matri, A. Costan, G. Antoniu, J. Montes, M. S. Pérez,
Týr: Blob storage meets built-in transactions, in: SC16:
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2016, pp. 573–584.
doi:10.1109/SC.2016.48.

[29] The Lustre File System, http://lustre.org/ (2017).
[30] M. Moore, D. Bonnie, W. Ligon, N. Mills, , S. Yang, B. Ligon,

M. Marshall, E. Quarles, S. Sampson, B. Wilson, OrangeFS:
Advancing PVFS, in: 2011 9th USENIX Conference on File
and Storage Technologies (FAST), 2011.

[31] D. Kimpe, R. Ross, Storage models: Past, present, and future,
High Performance Parallel I/O (2014) 335–345.

[32] J. Cope, K. Iskra, D. Kimpe, R. B. Ross, Bridging HPC and grid
file I/O with IOFSL, in: Applied Parallel and Scientific Com-
puting - 10th International Conference, PARA 2010, Reykjavı́k,
Iceland, June 6-9, 2010, Revised Selected Papers, Part II, 2010,
pp. 215–225. doi:10.1007/978-3-642-28145-7 22.

[33] D. Huang, J. Yin, J. Wang, X. Zhang, J. Zhang, J. Zhou, UNIO:
A unified I/O system framework for hybrid scientific work-
flow, in: Cloud Computing and Big Data - Second Interna-
tional Conference, CloudCom-Asia 2015, Huangshan, China,
June 17-19, 2015, Revised Selected Papers, 2015, pp. 99–114.
doi:10.1007/978-3-319-28430-9 8.

[34] S. Patil, G. A. Gibson, Scale and concurrency of GIGA+: file
system directories with millions of files, in: 9th USENIX Con-
ference on File and Storage Technologies, San Jose, CA, USA,
February 15-17, 2011, 2011, pp. 177–190.

[35] M. Kuhn, A Semantics-Aware I/O Interface for High Perfor-
mance Computing, in: J. M. Kunkel, T. Ludwig, H. W. Meuer
(Eds.), Supercomputing, no. 7905 in Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, 2013, pp. 408–421.
doi:http://dx.doi.org/10.1007/978-3-642-38750-0 31.

[36] T. Sterling, E. Lusk, W. Gropp, Beowulf Cluster Computing
with Linux, 2nd Edition, MIT Press, Cambridge, MA, USA,
2003.

[37] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P.
Prost, M. Snir, B. Traversat, P. Wong, Overview of the MPI-
IO Parallel I/O Interface, Springer US, Boston, MA, 1996, pp.
127–146. doi:10.1007/978-1-4613-1401-1 5.

[38] Hierarchical data format version 5, https://hdfgroup.org/
HDF5 (2017).

[39] R. Latham, R. B. Ross, R. Thakur, The impact of file systems on
MPI-IO scalability, in: Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 19-22,
2004, Proceedings, 2004, pp. 87–96. doi:10.1007/978-3-540-
30218-6 18.

[40] M. Vilayannur, S. Lang, R. Ross, R. Klundt, L. Ward, Extend-
ing the POSIX I/O interface: A parallel file system perspective,
Tech. Rep. ANL/MCS-TM-302, Argonne National Laboratory
(10 2008).

[41] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google file system,
in: ACM SIGOPS Operating Systems Review, Vol. 37, ACM,
2003, pp. 29–43.

[42] S. Mikami, K. Ohta, O. Tatebe, Using the gfarm file system as
a POSIX compatible storage platform for Hadoop MapReduce
applications, in: Proceedings of the 2011 IEEE/ACM 12th Inter-
national Conference on Grid Computing, IEEE Computer Soci-
ety, 2011, pp. 181–189.

[43] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, I. Stoica, Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing, in: Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation,
USENIX Association, 2012, pp. 2–2.

[44] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
K. Tzoumas, Apache Flink: Stream and batch processing in a
single engine, Data Engineering 38 (4).

[45] J. Dean, S. Ghemawat, MapReduce: Simplified data processing
on large clusters, Communications of the ACM 51 (1) (2008)
107–113.

[46] S. Matsuoka, H. Sato, O. Tatebe, M. Koibuchi, I. Fujiwara,
S. Suzuki, M. Kakuta, T. Ishida, Y. Akiyama, T. Suzumura,
et al., Extreme big data (EBD): Next generation big data infras-
tructure technologies towards yottabyte/year, Supercomputing
frontiers and innovations 1 (2) (2014) 89–107.

[47] BDEC – Big Data and Extreme-Scale Computing, http://

www.exascale.org/bdec/ (2017).
[48] Z. Zhang, K. Barbary, F. A. Nothaft, E. R. Sparks, O. Zahn, M. J.

Franklin, D. A. Patterson, S. Perlmutter, Scientific computing
meets big data technology: An astronomy use case, in: 2015
IEEE International Conference on Big Data, Big Data 2015,
Santa Clara, CA, USA, October 29 - November 1, 2015, 2015,
pp. 918–927. doi:10.1109/BigData.2015.7363840.

[49] W. Lu, J. Jackson, R. S. Barga, AzureBlast: A case study
of developing science applications on the cloud, in: Pro-
ceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC 2010, Chicago,
Illinois, USA, June 21-25, 2010, 2010, pp. 413–420.
doi:10.1145/1851476.1851537.

[50] J. L. Vázquez-Poletti, D. Santos-Muñoz, I. M. Llorente,
F. Valero, A cloud for clouds: Weather research and forecast-
ing on a public cloud infrastructure, in: Cloud Computing and
Services Sciences - International Conference in Cloud Comput-
ing and Services Sciences, CLOSER 2014, Barcelona, Spain,
April 3-5, 2014, Revised Selected Papers, 2014, pp. 3–11.
doi:10.1007/978-3-319-25414-2 1.

[51] H. A. Duran-Limon, J. Flores-Contreras, N. Parlavantzas,
M. Zhao, A. Meulenert-Peña, Efficient execution of the WRF
model and other HPC applications in the cloud, Earth Science
Informatics 9 (3) (2016) 365–382. doi:10.1007/s12145-016-
0253-7.

[52] E. D. Carreño, E. Roloff, P. O. A. Navaux, Porting a nu-
merical atmospheric model to a cloud service, in: High Per-
formance Computing - Second Latin American Conference,
CARLA 2015, Petrópolis, Brazil, August 26-28, 2015, Proceed-
ings, 2015, pp. 50–61. doi:10.1007/978-3-319-26928-3 4.

[53] B. Langmead, M. C. Schatz, J. Lin, M. Pop, S. L. Salzberg,
Searching for SNPs with cloud computing, Genome Biology
10 (11) (2009) R134.

[54] A. Jaikar, S. Noh, Cloud computing: Read before use, T. Large-
Scale Data- and Knowledge-Centered Systems 30 (2016) 1–22.
doi:10.1007/978-3-662-54054-1 1.

[55] A. Gupta, D. Milojicic, Evaluation of HPC applications on
cloud, in: Open Cirrus Summit (OCS), 2011 Sixth, IEEE, 2011,
pp. 22–26.

[56] A. Gupta, L. V. Kale, F. Gioachin, V. March, C. H. Suen, B.-S.
Lee, P. Faraboschi, R. Kaufmann, D. Milojicic, The who, what,
why, and how of high performance computing in the cloud, in:
2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom), Vol. 1, IEEE, 2013, pp.
306–314.

[57] R. Ledyayev, H. Richter, High performance computing in a
cloud using OpenStack, Cloud Computing (2014) 108–113.

15



[58] P. Jakovits, S. N. Srirama, I. Kromonov, Stratus: A distributed
computing framework for scientific simulations on the cloud, in:
14th IEEE International Conference on High Performance Com-
puting and Communication & 9th IEEE International Confer-
ence on Embedded Software and Systems, HPCC-ICESS 2012,
Liverpool, United Kingdom, June 25-27, 2012, pp. 1053–1059.
doi:10.1109/HPCC.2012.154.

[59] A. Pan, J. P. Walters, V. S. Pai, D. I. D. Kang, S. P. Crago, Inte-
grating high performance file systems in a cloud computing en-
vironment, in: 2012 SC Companion: High Performance Com-
puting, Networking Storage and Analysis, 2012, pp. 753–759.
doi:10.1109/SC.Companion.2012.103.

[60] Y. Abe, G. Gibson, pwalrus: Towards better integration of par-
allel file systems into cloud storage, in: Cluster Computing
Workshops and Posters (Cluster Workshops), 2010 IEEE Inter-
national Conference on, IEEE, 2010, pp. 1–7.

[61] W. Shi, D. Ju, D. Wang, Saga: A cost efficient file system based
on cloud storage service, in: Economics of Grids, Clouds, Sys-
tems, and Services - 8th International Workshop, GECON 2011,
Paphos, Cyprus, December 5, 2011, Revised Selected Papers,
2011, pp. 173–184. doi:10.1007/978-3-642-28675-9 13.

[62] Sierra, https://computation.llnl.gov/computers/

sierra (2017).
[63] Summit, https://www.olcf.ornl.gov/summit/ (2017).
[64] Aurora, https://aurora.alcf.anl.gov/ (2017).
[65] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,

N. Maruyama, S. Matsuoka, Fti: High performance fault tol-
erance interface for hybrid systems, in: Proceedings of 2011 In-
ternational Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’11, ACM, New York, NY,
USA, 2011, pp. 32:1–32:32. doi:10.1145/2063384.2063427.

[66] C. Docan, M. Parashar, S. Klasky, DataSpaces: An in-
teraction and coordination framework for coupled simula-
tion workflows, in: Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Comput-
ing, HPDC ’10, ACM, New York, NY, USA, 2010, pp. 25–36.
doi:10.1145/1851476.1851481.

[67] G. C. Fox, J. Shantenu, Q. Judy, E. Saliya, L. Andre, Towards a
comprehensive set of big data benchmarks, Advances in Parallel
Computing 26 (2015) 47–66. doi:10.3233/978-1-61499-583-8-
47.

[68] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,
Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li,
B. Qiu, BigDataBench: A big data benchmark suite from In-
ternet services, in: 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA), IEEE,
2014. doi:10.1109/hpca.2014.6835958.

[69] mpiBLAST: Open-Source Parallel BLAST, http://www.

mpiblast.org/ (2017).
[70] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman,

Basic local alignment search tool, Journal of Molecular Biology
215 (3) (1990) 403–410. doi:10.1016/s0022-2836(05)80360-2.

[71] Ocean circulation models, https://www.gfdl.noaa.gov/

ocean-model/ (2017).
[72] U. H. Institute of Oceanography, ECOHAM, https://wiki.

zmaw.de/ifm/ECOHAM (2015).
[73] I. Lorkowski, J. Pätsch, A. Moll, W. Kühn, Interannual vari-

ability of carbon fluxes in the North Sea from 1970 to 2006–
competing effects of abiotic and biotic drivers on the gas-
exchange of CO2, Estuarine, Coastal and Shelf Science 100
(2012) 38–57.

[74] F. Große, N. Greenwood, M. Kreus, H. Lenhart, D. Machoczek,
J. Pätsch, L. A. Salt, H. Thomas, Looking beyond stratifica-
tion: A model-based analysis of the biological drivers of oxygen
depletion in the North Sea, Biogeosciences Discussions (2015)

2511–2535doi:http://dx.doi.org/10.5194/bgd-12-12543-2015.
[75] J. Stone, An efficient library for parallel ray tracing and anima-

tion, Tech. rep., Intel Supercomputer Users Group Proceedings
(1995).

[76] M. Li, J. Tan, Y. Wang, L. Zhang, V. Salapura, Sparkbench: a
comprehensive benchmarking suite for in memory data analytic
platform Spark, in: Proceedings of the 12th ACM International
Conference on Computing Frontiers, ACM, 2015, p. 53.

[77] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jean-
not, E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nuss-
baum, O. Richard, C. Pérez, F. Quesnel, C. Rohr, L. Sarzyniec,
Adding virtualization capabilities to the Grid’5000 testbed, in:
I. Ivanov, M. Sinderen, F. Leymann, T. Shan (Eds.), Cloud Com-
puting and Services Science, Vol. 367 of Communications in
Computer and Information Science, Springer International Pub-
lishing, 2013, pp. 3–20. doi:10.1007/978-3-319-04519-1 1.

[78] MPICH: High-performance portable MPI, https://www.

mpich.org/ (2017).
[79] Running Spark on YARN, https://spark.apache.org/

docs/latest/running-on-yarn.html (2017).
[80] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
W. Vogels, Dynamo: Amazon’s highly available key-value
store, SIGOPS Oper. Syst. Rev. 41 (6) (2007) 205–220.
doi:10.1145/1323293.1294281.

[81] S. Ishiguro, J. Murakami, Y. Oyama, O. Tatebe, Optimiz-
ing local file accesses for fuse-based distributed storage,
in: 2012 SC Companion: High Performance Comput-
ing, Networking Storage and Analysis, Salt Lake City,
UT, USA, November 10-16, 2012, 2012, pp. 760–765.
doi:10.1109/SC.Companion.2012.104.
URL https://doi.org/10.1109/SC.Companion.2012.

104

[82] S. Oral, J. Simmons, J. Hill, D. Leverman, F. Wang, M. Ezell,
R. Miller, D. Fuller, R. Gunasekaran, Y. Kim, S. Gupta, D. T.
S. S. Vazhkudai, J. H. Rogers, D. Dillow, G. M. Shipman,
A. S. Bland, Best practices and lessons learned from deploy-
ing and operating large-scale data-centric parallel file systems,
in: SC14: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2014, pp. 217–228.
doi:10.1109/SC.2014.23.

16


